带有时空白噪声的二维随机纳维-斯托克斯方程扰动的全局存在性

IF 2.4 1区 数学 Q1 MATHEMATICS
Martin Hairer, Tommaso Rosati
{"title":"带有时空白噪声的二维随机纳维-斯托克斯方程扰动的全局存在性","authors":"Martin Hairer,&nbsp;Tommaso Rosati","doi":"10.1007/s40818-023-00165-6","DOIUrl":null,"url":null,"abstract":"<div><p>We prove global in time well-posedness for perturbations of the 2D stochastic Navier–Stokes equations </p><div><div><span>$$\\begin{aligned} \\partial _t u + u \\cdot \\nabla u= &amp; {} \\Delta u - \\nabla p + \\zeta + \\xi \\;, \\qquad u (0, \\cdot ) = u_{0} \\;,\\\\ {\\text {div}}(u)= &amp; {} 0 \\;, \\end{aligned}$$</span></div></div><p>driven by additive space-time white noise <span>\\( \\xi \\)</span>, with perturbation <span>\\( \\zeta \\)</span> in the Hölder–Besov space <span>\\(\\mathcal {C}^{-2 + 3\\kappa } \\)</span>, periodic boundary conditions and initial condition <span>\\( u_{0} \\in \\mathcal {C}^{-1 + \\kappa } \\)</span> for any <span>\\( \\kappa &gt;0 \\)</span>. The proof relies on an energy estimate which in turn builds on a dynamic high-low frequency decomposition and tools from paracontrolled calculus. Our argument uses that the solution to the linear equation is a <span>\\( \\log \\)</span>–correlated field, yielding a double exponential growth bound on the solution. Notably, our method does not rely on any explicit knowledge of the invariant measure to the SPDE, hence the perturbation <span>\\( \\zeta \\)</span> is not restricted to the Cameron–Martin space of the noise, and the initial condition may be anticipative. Finally, we introduce a notion of weak solution that leads to well-posedness for all initial data <span>\\( u_{0}\\)</span> in <span>\\( L^{2} \\)</span>, the critical space of initial conditions.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-023-00165-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Global existence for perturbations of the 2D stochastic Navier–Stokes equations with space-time white noise\",\"authors\":\"Martin Hairer,&nbsp;Tommaso Rosati\",\"doi\":\"10.1007/s40818-023-00165-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove global in time well-posedness for perturbations of the 2D stochastic Navier–Stokes equations </p><div><div><span>$$\\\\begin{aligned} \\\\partial _t u + u \\\\cdot \\\\nabla u= &amp; {} \\\\Delta u - \\\\nabla p + \\\\zeta + \\\\xi \\\\;, \\\\qquad u (0, \\\\cdot ) = u_{0} \\\\;,\\\\\\\\ {\\\\text {div}}(u)= &amp; {} 0 \\\\;, \\\\end{aligned}$$</span></div></div><p>driven by additive space-time white noise <span>\\\\( \\\\xi \\\\)</span>, with perturbation <span>\\\\( \\\\zeta \\\\)</span> in the Hölder–Besov space <span>\\\\(\\\\mathcal {C}^{-2 + 3\\\\kappa } \\\\)</span>, periodic boundary conditions and initial condition <span>\\\\( u_{0} \\\\in \\\\mathcal {C}^{-1 + \\\\kappa } \\\\)</span> for any <span>\\\\( \\\\kappa &gt;0 \\\\)</span>. The proof relies on an energy estimate which in turn builds on a dynamic high-low frequency decomposition and tools from paracontrolled calculus. Our argument uses that the solution to the linear equation is a <span>\\\\( \\\\log \\\\)</span>–correlated field, yielding a double exponential growth bound on the solution. Notably, our method does not rely on any explicit knowledge of the invariant measure to the SPDE, hence the perturbation <span>\\\\( \\\\zeta \\\\)</span> is not restricted to the Cameron–Martin space of the noise, and the initial condition may be anticipative. Finally, we introduce a notion of weak solution that leads to well-posedness for all initial data <span>\\\\( u_{0}\\\\)</span> in <span>\\\\( L^{2} \\\\)</span>, the critical space of initial conditions.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-023-00165-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-023-00165-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-023-00165-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了二维随机纳维-斯托克斯方程的扰动在时间上的全局好求性 $$\begin{aligned}\partial _t u + u \cdot \nabla u= & {}\Delta u - \nabla p + \zeta + \xi \;, \qquad u (0, \cdot ) = u_{0}\\{text {div}(u)= & {} 0 \;end{aligned}$$driven by additive space-time white noise \( \xi \), with perturbation \( \zeta \) in the Hölder-Besov space \(\mathcal {C}^{-2 + 3\kappa } \)、periodic boundary conditions and initial condition \( u_{0} \in \mathcal {C}^{-1 + \kappa } \) for any \( \kappa >;0 \).证明依赖于能量估计,而能量估计又建立在动态高低频分解和准控制微积分工具之上。我们的论证使用了线性方程的解是一个 \( \log \)相关场,从而得出解的双指数增长约束。值得注意的是,我们的方法并不依赖于对 SPDE 不变量的任何显式知识,因此扰动 \( \zeta \) 并不局限于噪声的 Cameron-Martin 空间,而且初始条件可能是预期的。最后,我们引入了一个弱解的概念,它可以导致初始条件临界空间 \( L^{2} \) 中所有初始数据 \( u_{0}\) 的良好求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence for perturbations of the 2D stochastic Navier–Stokes equations with space-time white noise

We prove global in time well-posedness for perturbations of the 2D stochastic Navier–Stokes equations

$$\begin{aligned} \partial _t u + u \cdot \nabla u= & {} \Delta u - \nabla p + \zeta + \xi \;, \qquad u (0, \cdot ) = u_{0} \;,\\ {\text {div}}(u)= & {} 0 \;, \end{aligned}$$

driven by additive space-time white noise \( \xi \), with perturbation \( \zeta \) in the Hölder–Besov space \(\mathcal {C}^{-2 + 3\kappa } \), periodic boundary conditions and initial condition \( u_{0} \in \mathcal {C}^{-1 + \kappa } \) for any \( \kappa >0 \). The proof relies on an energy estimate which in turn builds on a dynamic high-low frequency decomposition and tools from paracontrolled calculus. Our argument uses that the solution to the linear equation is a \( \log \)–correlated field, yielding a double exponential growth bound on the solution. Notably, our method does not rely on any explicit knowledge of the invariant measure to the SPDE, hence the perturbation \( \zeta \) is not restricted to the Cameron–Martin space of the noise, and the initial condition may be anticipative. Finally, we introduce a notion of weak solution that leads to well-posedness for all initial data \( u_{0}\) in \( L^{2} \), the critical space of initial conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信