揭示高盐度湖泊中微生物暗物质的生物合成和生物降解潜力

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Zhiguang Qiu , Yuanyuan Zhu , Qing Zhang , Xuejiao Qiao , Rong Mu , Zheng Xu , Yan Yan , Fan Wang , Tong Zhang , Wei-Qin Zhuang , Ke Yu
{"title":"揭示高盐度湖泊中微生物暗物质的生物合成和生物降解潜力","authors":"Zhiguang Qiu ,&nbsp;Yuanyuan Zhu ,&nbsp;Qing Zhang ,&nbsp;Xuejiao Qiao ,&nbsp;Rong Mu ,&nbsp;Zheng Xu ,&nbsp;Yan Yan ,&nbsp;Fan Wang ,&nbsp;Tong Zhang ,&nbsp;Wei-Qin Zhuang ,&nbsp;Ke Yu","doi":"10.1016/j.ese.2023.100359","DOIUrl":null,"url":null,"abstract":"<div><p>Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498423001242/pdfft?md5=5cc87a508ccf5403138bf10cc16ba9f3&pid=1-s2.0-S2666498423001242-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes\",\"authors\":\"Zhiguang Qiu ,&nbsp;Yuanyuan Zhu ,&nbsp;Qing Zhang ,&nbsp;Xuejiao Qiao ,&nbsp;Rong Mu ,&nbsp;Zheng Xu ,&nbsp;Yan Yan ,&nbsp;Fan Wang ,&nbsp;Tong Zhang ,&nbsp;Wei-Qin Zhuang ,&nbsp;Ke Yu\",\"doi\":\"10.1016/j.ese.2023.100359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666498423001242/pdfft?md5=5cc87a508ccf5403138bf10cc16ba9f3&pid=1-s2.0-S2666498423001242-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498423001242\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498423001242","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微生物的生物合成和生物降解是生物技术、新药物和新疗法以及环境修复发展的重要基础。然而,大多数未培养的微生物物种及其在极端环境中的代谢能力仍然不为人知。在这里,我们揭示了中国新疆四个深内陆高盐度湖泊中微生物暗物质(MDMs)的代谢潜力。利用元基因组分选技术,我们发现了82个门类的3030个元基因组组装基因组(MAGs)的丰富多样性,并揭示了很大一部分(2363个MAGs)以前在属一级未分类。这些未知的 MAGs 在不同湖泊中显示出独特的分布模式,表明它们与不同的物理化学条件密切相关。我们的分析揭示了 9635 个生物合成基因簇(BGCs),其中有 9403 个是新发现的,这表明生物技术的潜力尚待开发。值得注意的是,一些来自潜在新门类的 MAGs 表现出高密度的这些 BGCs。除了生物合成之外,我们的研究还在以前未知的微生物支系中发现了新的生物降解途径,包括脱卤、厌氧铵氧化(Anammox)以及多环芳烃(PAHs)和塑料的降解。这些发现极大地丰富了我们对生物合成和生物降解过程的认识,为生物技术创新开辟了新途径,强调了超盐环境中微生物多样性尚未开发的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes

Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes

Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信