Michael J. Johnson, Carl Enloe, David R. Boris, Tzvetelina B. Petrova, Scott G. Walton
{"title":"从目标基底电流确定大气压等离子体射流中的流线速度","authors":"Michael J. Johnson, Carl Enloe, David R. Boris, Tzvetelina B. Petrova, Scott G. Walton","doi":"10.1016/j.elstat.2023.103883","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma jets are an atmospheric pressure plasma source that projects streamers outside the bounds of the plasma device. The electric field produced by these streamers can generate a current in the substrate before the streamer contacts the substrate. This displacement current is a strong function of the proximity of the streamer to the surface. We develop a basic model of the streamer traveling towards the substrate that can determine the streamer location and velocity from the measured displacement current. This simple approach shows good agreement with optical imaging equipment and can provide a means to rapidly quantify the streamer velocity.</p></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030438862300092X/pdfft?md5=f19cf9733c68031697df17155837976b&pid=1-s2.0-S030438862300092X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Determining the streamer velocity in an atmospheric pressure plasma jet from the target substrate current\",\"authors\":\"Michael J. Johnson, Carl Enloe, David R. Boris, Tzvetelina B. Petrova, Scott G. Walton\",\"doi\":\"10.1016/j.elstat.2023.103883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasma jets are an atmospheric pressure plasma source that projects streamers outside the bounds of the plasma device. The electric field produced by these streamers can generate a current in the substrate before the streamer contacts the substrate. This displacement current is a strong function of the proximity of the streamer to the surface. We develop a basic model of the streamer traveling towards the substrate that can determine the streamer location and velocity from the measured displacement current. This simple approach shows good agreement with optical imaging equipment and can provide a means to rapidly quantify the streamer velocity.</p></div>\",\"PeriodicalId\":54842,\"journal\":{\"name\":\"Journal of Electrostatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S030438862300092X/pdfft?md5=f19cf9733c68031697df17155837976b&pid=1-s2.0-S030438862300092X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrostatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030438862300092X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030438862300092X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Determining the streamer velocity in an atmospheric pressure plasma jet from the target substrate current
Plasma jets are an atmospheric pressure plasma source that projects streamers outside the bounds of the plasma device. The electric field produced by these streamers can generate a current in the substrate before the streamer contacts the substrate. This displacement current is a strong function of the proximity of the streamer to the surface. We develop a basic model of the streamer traveling towards the substrate that can determine the streamer location and velocity from the measured displacement current. This simple approach shows good agreement with optical imaging equipment and can provide a means to rapidly quantify the streamer velocity.
期刊介绍:
The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas:
Electrostatic charge separation processes.
Electrostatic manipulation of particles, droplets, and biological cells.
Electrostatically driven or controlled fluid flow.
Electrostatics in the gas phase.