Emma Buick, Andrew Mead, Abeer Alhubaysh, Patricia Bou Assi, Parijat Das, James Dayus, Mark Turner, Lukasz Kowalski, Jenny Murray, Derek Renshaw, Sebastien Farnaud
{"title":"细胞船:用于哺乳动物细胞培养的常温运输和短期储存介质。","authors":"Emma Buick, Andrew Mead, Abeer Alhubaysh, Patricia Bou Assi, Parijat Das, James Dayus, Mark Turner, Lukasz Kowalski, Jenny Murray, Derek Renshaw, Sebastien Farnaud","doi":"10.1089/bio.2023.0100","DOIUrl":null,"url":null,"abstract":"<p><p>Cell culture is a critical platform for numerous research and industrial processes. However, methods for transporting cells are largely limited to cryopreservation, which is logistically challenging, requires the use of potentially cytotoxic cryopreservatives, and can result in poor cell recovery. Development of a transport media that can be used at ambient temperatures would alleviate these issues. In this study, we describe a novel transportation medium for mammalian cells. Five commonly used cell lines, (HEK293, CHO, HepG2, K562, and Jurkat) were successfully shipped and stored for a minimum of 72 hours and up to 96 hours at ambient temperature, after which, cells were recovered into standard culture conditions. Viability (%) and cell numbers, were examined, before, following the transport/storage period and following the recovery period. In all experiments, cell numbers returned to pretransport/storage concentration within 24-48 hours recovery. Imaging data indicated that HepG2 cells were fully adherent and had established typical growth morphology following 48 hours recovery, which was not seen in cells recovered from cryopreservation. Following recovery, Jurkat cells that had been subjected to a 96 hours transport/storage period, demonstrated a 1.93-fold increase compared with the starting cell number with >95% cell viability. We conclude that CellShip<sup>®</sup> may represent a viable method for the transportation of mammalian cells for multiple downstream applications in the Life Sciences research sector.</p>","PeriodicalId":55358,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":"275-285"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CellShip: An Ambient Temperature Transport and Short-Term Storage Medium for Mammalian Cell Cultures.\",\"authors\":\"Emma Buick, Andrew Mead, Abeer Alhubaysh, Patricia Bou Assi, Parijat Das, James Dayus, Mark Turner, Lukasz Kowalski, Jenny Murray, Derek Renshaw, Sebastien Farnaud\",\"doi\":\"10.1089/bio.2023.0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell culture is a critical platform for numerous research and industrial processes. However, methods for transporting cells are largely limited to cryopreservation, which is logistically challenging, requires the use of potentially cytotoxic cryopreservatives, and can result in poor cell recovery. Development of a transport media that can be used at ambient temperatures would alleviate these issues. In this study, we describe a novel transportation medium for mammalian cells. Five commonly used cell lines, (HEK293, CHO, HepG2, K562, and Jurkat) were successfully shipped and stored for a minimum of 72 hours and up to 96 hours at ambient temperature, after which, cells were recovered into standard culture conditions. Viability (%) and cell numbers, were examined, before, following the transport/storage period and following the recovery period. In all experiments, cell numbers returned to pretransport/storage concentration within 24-48 hours recovery. Imaging data indicated that HepG2 cells were fully adherent and had established typical growth morphology following 48 hours recovery, which was not seen in cells recovered from cryopreservation. Following recovery, Jurkat cells that had been subjected to a 96 hours transport/storage period, demonstrated a 1.93-fold increase compared with the starting cell number with >95% cell viability. We conclude that CellShip<sup>®</sup> may represent a viable method for the transportation of mammalian cells for multiple downstream applications in the Life Sciences research sector.</p>\",\"PeriodicalId\":55358,\"journal\":{\"name\":\"Biopreservation and Biobanking\",\"volume\":\" \",\"pages\":\"275-285\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopreservation and Biobanking\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2023.0100\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0100","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
CellShip: An Ambient Temperature Transport and Short-Term Storage Medium for Mammalian Cell Cultures.
Cell culture is a critical platform for numerous research and industrial processes. However, methods for transporting cells are largely limited to cryopreservation, which is logistically challenging, requires the use of potentially cytotoxic cryopreservatives, and can result in poor cell recovery. Development of a transport media that can be used at ambient temperatures would alleviate these issues. In this study, we describe a novel transportation medium for mammalian cells. Five commonly used cell lines, (HEK293, CHO, HepG2, K562, and Jurkat) were successfully shipped and stored for a minimum of 72 hours and up to 96 hours at ambient temperature, after which, cells were recovered into standard culture conditions. Viability (%) and cell numbers, were examined, before, following the transport/storage period and following the recovery period. In all experiments, cell numbers returned to pretransport/storage concentration within 24-48 hours recovery. Imaging data indicated that HepG2 cells were fully adherent and had established typical growth morphology following 48 hours recovery, which was not seen in cells recovered from cryopreservation. Following recovery, Jurkat cells that had been subjected to a 96 hours transport/storage period, demonstrated a 1.93-fold increase compared with the starting cell number with >95% cell viability. We conclude that CellShip® may represent a viable method for the transportation of mammalian cells for multiple downstream applications in the Life Sciences research sector.
Biopreservation and BiobankingBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
自引率
12.50%
发文量
114
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.