电缆细菌:保护环境的广泛丝状电活性微生物。

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Trends in Microbiology Pub Date : 2024-07-01 Epub Date: 2023-12-26 DOI:10.1016/j.tim.2023.12.001
Meijun Dong, Lars Peter Nielsen, Shan Yang, Lasse Hyldgaard Klausen, Meiying Xu
{"title":"电缆细菌:保护环境的广泛丝状电活性微生物。","authors":"Meijun Dong, Lars Peter Nielsen, Shan Yang, Lasse Hyldgaard Klausen, Meiying Xu","doi":"10.1016/j.tim.2023.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>Cable bacteria have been identified and detected worldwide since their discovery in marine sediments in Aarhus Bay, Denmark. Their activity can account for the majority of oxygen consumption and sulfide depletion in sediments, and they induce sulfate accumulation, pH excursions, and the generation of electric fields. In addition, they can affect the fluxes of other elements such as calcium, iron, manganese, nitrogen, and phosphorous. Recent developments in our understanding of the impact of cable bacteria on element cycling have revealed their positive contributions to mitigating environmental problems, such as recovering self-purification capacity, enhancing petroleum hydrocarbon degradation, alleviating phosphorus eutrophication, delaying euxinia, and reducing methane emission. We highlight recent research outcomes on their distribution, state-of-the-art findings on their physiological characteristics, and ecological contributions.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"697-706"},"PeriodicalIF":14.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cable bacteria: widespread filamentous electroactive microorganisms protecting environments.\",\"authors\":\"Meijun Dong, Lars Peter Nielsen, Shan Yang, Lasse Hyldgaard Klausen, Meiying Xu\",\"doi\":\"10.1016/j.tim.2023.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cable bacteria have been identified and detected worldwide since their discovery in marine sediments in Aarhus Bay, Denmark. Their activity can account for the majority of oxygen consumption and sulfide depletion in sediments, and they induce sulfate accumulation, pH excursions, and the generation of electric fields. In addition, they can affect the fluxes of other elements such as calcium, iron, manganese, nitrogen, and phosphorous. Recent developments in our understanding of the impact of cable bacteria on element cycling have revealed their positive contributions to mitigating environmental problems, such as recovering self-purification capacity, enhancing petroleum hydrocarbon degradation, alleviating phosphorus eutrophication, delaying euxinia, and reducing methane emission. We highlight recent research outcomes on their distribution, state-of-the-art findings on their physiological characteristics, and ecological contributions.</p>\",\"PeriodicalId\":23275,\"journal\":{\"name\":\"Trends in Microbiology\",\"volume\":\" \",\"pages\":\"697-706\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tim.2023.12.001\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2023.12.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自从在丹麦奥胡斯湾的海洋沉积物中发现缆索细菌以来,世界各地都发现并检测到了这种细菌。它们的活动可导致沉积物中大部分氧气消耗和硫化物耗竭,并引起硫酸盐积累、pH 值偏移和电场产生。此外,它们还会影响钙、铁、锰、氮和磷等其他元素的通量。最近,我们对缆索细菌对元素循环的影响的认识有了新的发展,揭示了它们在缓解环境问题方面的积极贡献,如恢复自净能力、提高石油烃降解、减轻磷富营养化、延缓休眠期和减少甲烷排放。我们重点介绍了有关其分布的最新研究成果、有关其生理特征的最新发现以及对生态的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cable bacteria: widespread filamentous electroactive microorganisms protecting environments.

Cable bacteria have been identified and detected worldwide since their discovery in marine sediments in Aarhus Bay, Denmark. Their activity can account for the majority of oxygen consumption and sulfide depletion in sediments, and they induce sulfate accumulation, pH excursions, and the generation of electric fields. In addition, they can affect the fluxes of other elements such as calcium, iron, manganese, nitrogen, and phosphorous. Recent developments in our understanding of the impact of cable bacteria on element cycling have revealed their positive contributions to mitigating environmental problems, such as recovering self-purification capacity, enhancing petroleum hydrocarbon degradation, alleviating phosphorus eutrophication, delaying euxinia, and reducing methane emission. We highlight recent research outcomes on their distribution, state-of-the-art findings on their physiological characteristics, and ecological contributions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信