在南亚研究人群中使用多基因和临床风险评分评估 2 型糖尿病风险预测。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2023-12-25 eCollection Date: 2023-01-01 DOI:10.1177/20420188231220120
Madhusmita Rout, Gurpreet S Wander, Sarju Ralhan, Jai Rup Singh, Christopher E Aston, Piers R Blackett, Steven Chernausek, Dharambir K Sanghera
{"title":"在南亚研究人群中使用多基因和临床风险评分评估 2 型糖尿病风险预测。","authors":"Madhusmita Rout, Gurpreet S Wander, Sarju Ralhan, Jai Rup Singh, Christopher E Aston, Piers R Blackett, Steven Chernausek, Dharambir K Sanghera","doi":"10.1177/20420188231220120","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genome-wide polygenic risk scores (PRS) have shown high specificity and sensitivity in predicting type 2 diabetes (T2D) risk in Europeans. However, the PRS-driven information and its clinical significance in non-Europeans are underrepresented. We examined the predictive efficacy and transferability of PRS models using variant information derived from genome-wide studies of Asian Indians (AIs) (PRS<sub>AI</sub>) and Europeans (PRS<sub>EU</sub>) using 13,974 AI individuals.</p><p><strong>Methods: </strong>Weighted PRS models were constructed and analyzed on 4602 individuals from the Asian Indian Diabetes Heart Study/Sikh Diabetes Study (AIDHS/SDS) as discovery/training and test/validation datasets. The results were further replicated in 9372 South Asian individuals from UK Biobank (UKBB). We also assessed the performance of each PRS model by combining data of the clinical risk score (CRS).</p><p><strong>Results: </strong>Both genetic models (PRS<sub>AI</sub> and PRS<sub>EU</sub>) successfully predicted the T2D risk. However, the PRS<sub>AI</sub> revealed 13.2% odds ratio (OR) 1.80 [95% confidence interval (CI) 1.63-1.97; <i>p</i> = 1.6 × 10<sup>-152</sup>] and 12.2% OR 1.38 (95% CI 1.30-1.46; <i>p</i> = 7.1 × 10<sup>-237</sup>) superior performance in AIDHS/SDS and UKBB validation sets, respectively. Comparing individuals of extreme PRS (ninth decile) with the average PRS (fifth decile), PRS<sub>AI</sub> showed about two-fold OR 20.73 (95% CI 10.27-41.83; <i>p</i> = 2.7 × 10<sup>-17</sup>) and 1.4-fold OR 3.19 (95% CI 2.51-4.06; <i>p</i> = 4.8 × 10<sup>-21</sup>) higher predictability to identify subgroups with higher genetic risk than the PRS<sub>EU</sub>. Combining PRS and CRS improved the area under the curve from 0.74 to 0.79 in PRS<sub>AI</sub> and 0.72 to 0.75 in PRS<sub>EU</sub>.</p><p><strong>Conclusion: </strong>Our data suggest the need for extending genetic and clinical studies in varied ethnic groups to exploit the full clinical potential of PRS as a risk prediction tool in diverse study populations.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752110/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing the prediction of type 2 diabetes risk using polygenic and clinical risk scores in South Asian study populations.\",\"authors\":\"Madhusmita Rout, Gurpreet S Wander, Sarju Ralhan, Jai Rup Singh, Christopher E Aston, Piers R Blackett, Steven Chernausek, Dharambir K Sanghera\",\"doi\":\"10.1177/20420188231220120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Genome-wide polygenic risk scores (PRS) have shown high specificity and sensitivity in predicting type 2 diabetes (T2D) risk in Europeans. However, the PRS-driven information and its clinical significance in non-Europeans are underrepresented. We examined the predictive efficacy and transferability of PRS models using variant information derived from genome-wide studies of Asian Indians (AIs) (PRS<sub>AI</sub>) and Europeans (PRS<sub>EU</sub>) using 13,974 AI individuals.</p><p><strong>Methods: </strong>Weighted PRS models were constructed and analyzed on 4602 individuals from the Asian Indian Diabetes Heart Study/Sikh Diabetes Study (AIDHS/SDS) as discovery/training and test/validation datasets. The results were further replicated in 9372 South Asian individuals from UK Biobank (UKBB). We also assessed the performance of each PRS model by combining data of the clinical risk score (CRS).</p><p><strong>Results: </strong>Both genetic models (PRS<sub>AI</sub> and PRS<sub>EU</sub>) successfully predicted the T2D risk. However, the PRS<sub>AI</sub> revealed 13.2% odds ratio (OR) 1.80 [95% confidence interval (CI) 1.63-1.97; <i>p</i> = 1.6 × 10<sup>-152</sup>] and 12.2% OR 1.38 (95% CI 1.30-1.46; <i>p</i> = 7.1 × 10<sup>-237</sup>) superior performance in AIDHS/SDS and UKBB validation sets, respectively. Comparing individuals of extreme PRS (ninth decile) with the average PRS (fifth decile), PRS<sub>AI</sub> showed about two-fold OR 20.73 (95% CI 10.27-41.83; <i>p</i> = 2.7 × 10<sup>-17</sup>) and 1.4-fold OR 3.19 (95% CI 2.51-4.06; <i>p</i> = 4.8 × 10<sup>-21</sup>) higher predictability to identify subgroups with higher genetic risk than the PRS<sub>EU</sub>. Combining PRS and CRS improved the area under the curve from 0.74 to 0.79 in PRS<sub>AI</sub> and 0.72 to 0.75 in PRS<sub>EU</sub>.</p><p><strong>Conclusion: </strong>Our data suggest the need for extending genetic and clinical studies in varied ethnic groups to exploit the full clinical potential of PRS as a risk prediction tool in diverse study populations.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752110/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/20420188231220120\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20420188231220120","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

背景:全基因组多基因风险评分(PRS全基因组多基因风险评分(PRS)在预测欧洲人的 2 型糖尿病(T2D)风险方面显示出较高的特异性和灵敏度。然而,PRS 驱动的信息及其在非欧洲人中的临床意义却没有得到充分体现。我们利用对亚洲印第安人(AIs)(PRSAI)和欧洲人(PRSEU)进行的全基因组研究中获得的变异信息,使用 13,974 个亚洲印第安人个体检验了 PRS 模型的预测功效和可转移性:构建了加权 PRS 模型,并对来自亚洲印度糖尿病心脏研究/锡克族糖尿病研究(AIDHS/SDS)的 4602 个个体进行了发现/训练和测试/验证数据集分析。我们还在英国生物库(UKBB)的 9372 名南亚裔个体中复制了这一结果。我们还结合临床风险评分(CRS)数据评估了每个PRS模型的性能:结果:两个基因模型(PRSAI 和 PRSEU)都成功预测了 T2D 风险。然而,PRSAI 在 AIDHS/SDS 和 UKBB 验证集中分别显示出 13.2% 的几率比 (OR) 1.80 [95% 置信区间 (CI) 1.63-1.97; p = 1.6 × 10-152] 和 12.2% 的几率比 1.38 (95% CI 1.30-1.46; p = 7.1 × 10-237)更优越。将极端 PRS(第九十分位数)与平均 PRS(第五十分位数)的个体进行比较,PRSAI 在识别遗传风险较高的亚群方面的预测能力比 PRSEU 高出约 2 倍 OR 20.73(95% CI 10.27-41.83;p = 2.7 × 10-17)和 1.4 倍 OR 3.19(95% CI 2.51-4.06;p = 4.8 × 10-21)。结合 PRS 和 CRS,PRSAI 的曲线下面积从 0.74 增加到 0.79,PRSEU 的曲线下面积从 0.72 增加到 0.75:我们的数据表明,有必要在不同种族群体中扩大遗传和临床研究,以充分挖掘 PRS 作为风险预测工具在不同研究人群中的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the prediction of type 2 diabetes risk using polygenic and clinical risk scores in South Asian study populations.

Background: Genome-wide polygenic risk scores (PRS) have shown high specificity and sensitivity in predicting type 2 diabetes (T2D) risk in Europeans. However, the PRS-driven information and its clinical significance in non-Europeans are underrepresented. We examined the predictive efficacy and transferability of PRS models using variant information derived from genome-wide studies of Asian Indians (AIs) (PRSAI) and Europeans (PRSEU) using 13,974 AI individuals.

Methods: Weighted PRS models were constructed and analyzed on 4602 individuals from the Asian Indian Diabetes Heart Study/Sikh Diabetes Study (AIDHS/SDS) as discovery/training and test/validation datasets. The results were further replicated in 9372 South Asian individuals from UK Biobank (UKBB). We also assessed the performance of each PRS model by combining data of the clinical risk score (CRS).

Results: Both genetic models (PRSAI and PRSEU) successfully predicted the T2D risk. However, the PRSAI revealed 13.2% odds ratio (OR) 1.80 [95% confidence interval (CI) 1.63-1.97; p = 1.6 × 10-152] and 12.2% OR 1.38 (95% CI 1.30-1.46; p = 7.1 × 10-237) superior performance in AIDHS/SDS and UKBB validation sets, respectively. Comparing individuals of extreme PRS (ninth decile) with the average PRS (fifth decile), PRSAI showed about two-fold OR 20.73 (95% CI 10.27-41.83; p = 2.7 × 10-17) and 1.4-fold OR 3.19 (95% CI 2.51-4.06; p = 4.8 × 10-21) higher predictability to identify subgroups with higher genetic risk than the PRSEU. Combining PRS and CRS improved the area under the curve from 0.74 to 0.79 in PRSAI and 0.72 to 0.75 in PRSEU.

Conclusion: Our data suggest the need for extending genetic and clinical studies in varied ethnic groups to exploit the full clinical potential of PRS as a risk prediction tool in diverse study populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信