Astrid Wintering, Anna Hecht, Julia Meyer, Eric B Wong, Juwita Hübner, Sydney Abelson, Kira Feldman, Vanessa E Kennedy, Cheryl A C Peretz, Deborah L French, Jean Ann Maguire, Chintan Jobaliya, Marta Rojas Vasquez, Sunil Desai, Robin Dulman, Eneida Nemecek, Hilary Haines, Mahmoud Hammad, Alaa El Haddad, Scott C Kogan, Zied Abdullaev, Farid F Chehab, Sarah K Tasian, Catherine C Smith, Mignon L Loh, Elliot Stieglitz
{"title":"LNK/SH2B3是幼年骨髓单核细胞白血病的新型驱动因子","authors":"Astrid Wintering, Anna Hecht, Julia Meyer, Eric B Wong, Juwita Hübner, Sydney Abelson, Kira Feldman, Vanessa E Kennedy, Cheryl A C Peretz, Deborah L French, Jean Ann Maguire, Chintan Jobaliya, Marta Rojas Vasquez, Sunil Desai, Robin Dulman, Eneida Nemecek, Hilary Haines, Mahmoud Hammad, Alaa El Haddad, Scott C Kogan, Zied Abdullaev, Farid F Chehab, Sarah K Tasian, Catherine C Smith, Mignon L Loh, Elliot Stieglitz","doi":"10.3324/haematol.2023.283776","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in five canonical Ras pathway genes (NF1, NRAS, KRAS, PTPN11 and CBL) are detected in nearly 90% of patients with juvenile myelomonocytic leukemia (JMML), a frequently fatal malignant neoplasm of early childhood. In this report, we describe seven patients diagnosed with SH2B3-mutated JMML, including five patients who were found to have initiating, loss-of-function mutations in the gene. SH2B3 encodes the adaptor protein LNK, a negative regulator of normal hematopoiesis upstream of the Ras pathway. These mutations were identified to be germline, somatic or a combination of both. Loss of function of LNK, which has been observed in other myeloid malignancies, results in abnormal proliferation of hematopoietic cells due to cytokine hypersensitivity and activation of the JAK/STAT signaling pathway. In vitro studies of induced pluripotent stem cell-derived JMML-like hematopoietic progenitor cells also demonstrated sensitivity of SH2B3-mutated hematopoietic progenitor cells to JAK inhibition. Lastly, we describe two patients with JMML and SH2B3 mutations who were treated with the JAK1/2 inhibitor ruxolitinib. This report expands the spectrum of initiating mutations in JMML and raises the possibility of targeting the JAK/STAT pathway in patients with SH2B3 mutations.</p>","PeriodicalId":12964,"journal":{"name":"Haematologica","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290546/pdf/","citationCount":"0","resultStr":"{\"title\":\"LNK/<i>SH2B3</i> as a novel driver in juvenile myelomonocytic leukemia.\",\"authors\":\"Astrid Wintering, Anna Hecht, Julia Meyer, Eric B Wong, Juwita Hübner, Sydney Abelson, Kira Feldman, Vanessa E Kennedy, Cheryl A C Peretz, Deborah L French, Jean Ann Maguire, Chintan Jobaliya, Marta Rojas Vasquez, Sunil Desai, Robin Dulman, Eneida Nemecek, Hilary Haines, Mahmoud Hammad, Alaa El Haddad, Scott C Kogan, Zied Abdullaev, Farid F Chehab, Sarah K Tasian, Catherine C Smith, Mignon L Loh, Elliot Stieglitz\",\"doi\":\"10.3324/haematol.2023.283776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations in five canonical Ras pathway genes (NF1, NRAS, KRAS, PTPN11 and CBL) are detected in nearly 90% of patients with juvenile myelomonocytic leukemia (JMML), a frequently fatal malignant neoplasm of early childhood. In this report, we describe seven patients diagnosed with SH2B3-mutated JMML, including five patients who were found to have initiating, loss-of-function mutations in the gene. SH2B3 encodes the adaptor protein LNK, a negative regulator of normal hematopoiesis upstream of the Ras pathway. These mutations were identified to be germline, somatic or a combination of both. Loss of function of LNK, which has been observed in other myeloid malignancies, results in abnormal proliferation of hematopoietic cells due to cytokine hypersensitivity and activation of the JAK/STAT signaling pathway. In vitro studies of induced pluripotent stem cell-derived JMML-like hematopoietic progenitor cells also demonstrated sensitivity of SH2B3-mutated hematopoietic progenitor cells to JAK inhibition. Lastly, we describe two patients with JMML and SH2B3 mutations who were treated with the JAK1/2 inhibitor ruxolitinib. This report expands the spectrum of initiating mutations in JMML and raises the possibility of targeting the JAK/STAT pathway in patients with SH2B3 mutations.</p>\",\"PeriodicalId\":12964,\"journal\":{\"name\":\"Haematologica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290546/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Haematologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3324/haematol.2023.283776\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Haematologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3324/haematol.2023.283776","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
LNK/SH2B3 as a novel driver in juvenile myelomonocytic leukemia.
Mutations in five canonical Ras pathway genes (NF1, NRAS, KRAS, PTPN11 and CBL) are detected in nearly 90% of patients with juvenile myelomonocytic leukemia (JMML), a frequently fatal malignant neoplasm of early childhood. In this report, we describe seven patients diagnosed with SH2B3-mutated JMML, including five patients who were found to have initiating, loss-of-function mutations in the gene. SH2B3 encodes the adaptor protein LNK, a negative regulator of normal hematopoiesis upstream of the Ras pathway. These mutations were identified to be germline, somatic or a combination of both. Loss of function of LNK, which has been observed in other myeloid malignancies, results in abnormal proliferation of hematopoietic cells due to cytokine hypersensitivity and activation of the JAK/STAT signaling pathway. In vitro studies of induced pluripotent stem cell-derived JMML-like hematopoietic progenitor cells also demonstrated sensitivity of SH2B3-mutated hematopoietic progenitor cells to JAK inhibition. Lastly, we describe two patients with JMML and SH2B3 mutations who were treated with the JAK1/2 inhibitor ruxolitinib. This report expands the spectrum of initiating mutations in JMML and raises the possibility of targeting the JAK/STAT pathway in patients with SH2B3 mutations.
期刊介绍:
Haematologica is a journal that publishes articles within the broad field of hematology. It reports on novel findings in basic, clinical, and translational research.
Scope:
The scope of the journal includes reporting novel research results that:
Have a significant impact on understanding normal hematology or the development of hematological diseases.
Are likely to bring important changes to the diagnosis or treatment of hematological diseases.