{"title":"具有非均质迪里希勒边界条件的不可压缩流动的三步缺陷校正稳定算法","authors":"Bo Zheng, Yueqiang Shang","doi":"10.1007/s10444-023-10101-8","DOIUrl":null,"url":null,"abstract":"<div><p>Based on two-grid discretizations and quadratic equal-order finite elements for the velocity and pressure approximations, we develop a three-step defect-correction stabilized algorithm for the incompressible Navier-Stokes equations, where non-homogeneous Dirichlet boundary conditions are considered and high Reynolds numbers are allowed. In this developed algorithm, we first solve an artificial viscosity stabilized nonlinear problem on a coarse grid in a defect step and then correct the resulting residual by solving two stabilized and linearized problems on a fine grid in correction steps. While the fine grid correction problems have the same stiffness matrices with only different right-hand sides. We use a variational multiscale method to stabilize the system, making the algorithm has a broad range of potential applications in the simulation of high Reynolds number flows. Under the weak uniqueness condition, we give a stability analysis of the present algorithm, analyze the error bounds of the approximate solutions, and derive the algorithmic parameter scalings. Finally, we perform a series of numerical examples to demonstrate the promise of the proposed algorithm.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-step defect-correction stabilized algorithm for incompressible flows with non-homogeneous Dirichlet boundary conditions\",\"authors\":\"Bo Zheng, Yueqiang Shang\",\"doi\":\"10.1007/s10444-023-10101-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on two-grid discretizations and quadratic equal-order finite elements for the velocity and pressure approximations, we develop a three-step defect-correction stabilized algorithm for the incompressible Navier-Stokes equations, where non-homogeneous Dirichlet boundary conditions are considered and high Reynolds numbers are allowed. In this developed algorithm, we first solve an artificial viscosity stabilized nonlinear problem on a coarse grid in a defect step and then correct the resulting residual by solving two stabilized and linearized problems on a fine grid in correction steps. While the fine grid correction problems have the same stiffness matrices with only different right-hand sides. We use a variational multiscale method to stabilize the system, making the algorithm has a broad range of potential applications in the simulation of high Reynolds number flows. Under the weak uniqueness condition, we give a stability analysis of the present algorithm, analyze the error bounds of the approximate solutions, and derive the algorithmic parameter scalings. Finally, we perform a series of numerical examples to demonstrate the promise of the proposed algorithm.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-023-10101-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-023-10101-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A three-step defect-correction stabilized algorithm for incompressible flows with non-homogeneous Dirichlet boundary conditions
Based on two-grid discretizations and quadratic equal-order finite elements for the velocity and pressure approximations, we develop a three-step defect-correction stabilized algorithm for the incompressible Navier-Stokes equations, where non-homogeneous Dirichlet boundary conditions are considered and high Reynolds numbers are allowed. In this developed algorithm, we first solve an artificial viscosity stabilized nonlinear problem on a coarse grid in a defect step and then correct the resulting residual by solving two stabilized and linearized problems on a fine grid in correction steps. While the fine grid correction problems have the same stiffness matrices with only different right-hand sides. We use a variational multiscale method to stabilize the system, making the algorithm has a broad range of potential applications in the simulation of high Reynolds number flows. Under the weak uniqueness condition, we give a stability analysis of the present algorithm, analyze the error bounds of the approximate solutions, and derive the algorithmic parameter scalings. Finally, we perform a series of numerical examples to demonstrate the promise of the proposed algorithm.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.