{"title":"克利福德分析中普莱梅利-索霍基公式的新版本","authors":"Yufeng Wang, Zhongxiang Zhang","doi":"10.1007/s00006-023-01310-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give some new versions of the Plemelj–Sochocki formula under weaker condition in real Clifford Analysis which are different from the result in Luo and Du (Adv Appl Clifford Algebras 27:2531-2583, 2017). By the new versions of the Plemelj–Sochocki formula, we can give a different proof of the generalized Plemelj–Sochocki formula for the symmetric difference of boundary values, which is obtained in Luo and Du (2017), the classical Plemelj–Sochocki formula can be also derived.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Versions of the Plemelj–Sochocki Formula in Clifford Analysis\",\"authors\":\"Yufeng Wang, Zhongxiang Zhang\",\"doi\":\"10.1007/s00006-023-01310-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we give some new versions of the Plemelj–Sochocki formula under weaker condition in real Clifford Analysis which are different from the result in Luo and Du (Adv Appl Clifford Algebras 27:2531-2583, 2017). By the new versions of the Plemelj–Sochocki formula, we can give a different proof of the generalized Plemelj–Sochocki formula for the symmetric difference of boundary values, which is obtained in Luo and Du (2017), the classical Plemelj–Sochocki formula can be also derived.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-023-01310-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01310-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
New Versions of the Plemelj–Sochocki Formula in Clifford Analysis
In this paper, we give some new versions of the Plemelj–Sochocki formula under weaker condition in real Clifford Analysis which are different from the result in Luo and Du (Adv Appl Clifford Algebras 27:2531-2583, 2017). By the new versions of the Plemelj–Sochocki formula, we can give a different proof of the generalized Plemelj–Sochocki formula for the symmetric difference of boundary values, which is obtained in Luo and Du (2017), the classical Plemelj–Sochocki formula can be also derived.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.