通过核酸传递影响内皮细胞在炎症和伤口愈合中的作用

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue Engineering Part A Pub Date : 2024-04-01 Epub Date: 2024-02-07 DOI:10.1089/ten.TEA.2023.0296
Valerie Lallo, Laura G Bracaglia
{"title":"通过核酸传递影响内皮细胞在炎症和伤口愈合中的作用","authors":"Valerie Lallo, Laura G Bracaglia","doi":"10.1089/ten.TEA.2023.0296","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue engineering and wound-healing interventions are often designed for use in diseased and inflamed environments. In this space, endothelial cells (ECs) are crucial regulators of inflammation and healing, as they are the primary contact for recruitment of immune cells, as well as production of proinflammatory cytokines, which can stimulate or reduce inflammation. Alternatively, proliferation and spreading of ECs result in the formation of new vascular tissue or repair of damaged tissue, both critical for wound healing. Targeting ECs with specific nucleic acids could reduce unwanted inflammation or promote tissue regeneration as needed, which are two large issues involved in many regenerative medicine goals. Polymeric delivery systems are tools that can control the delivery of nucleic acids and prolong their effects. This review describes the use of polymeric vehicles for the delivery of nucleic acids to ECs for tissue engineering. Impact statement Tissue engineering is a rapidly growing field that has the potential to resolve many disease states and improve the quality of life of patients. In some applications, tissue-engineered strategies or constructs are developed to rebuild spaces damaged by disease or degeneration. To rebuild the native tissue, these constructs may need to interact with unwanted immune activity and cells. Various immune cells are often the focus of therapies as they are critical players in the inflammatory response; however, endothelial cells are also an extremely important and promising target in these cases. In addition, controlled delivery of specific-acting molecules, such as nucleic acids, is of growing interest for the regeneration and health of a variety of different tissues. It is important to understand what has been done and the potential of these targets and therapeutics for future investigation and advancements in tissue engineering.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040193/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influencing Endothelial Cells' Roles in Inflammation and Wound Healing Through Nucleic Acid Delivery.\",\"authors\":\"Valerie Lallo, Laura G Bracaglia\",\"doi\":\"10.1089/ten.TEA.2023.0296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tissue engineering and wound-healing interventions are often designed for use in diseased and inflamed environments. In this space, endothelial cells (ECs) are crucial regulators of inflammation and healing, as they are the primary contact for recruitment of immune cells, as well as production of proinflammatory cytokines, which can stimulate or reduce inflammation. Alternatively, proliferation and spreading of ECs result in the formation of new vascular tissue or repair of damaged tissue, both critical for wound healing. Targeting ECs with specific nucleic acids could reduce unwanted inflammation or promote tissue regeneration as needed, which are two large issues involved in many regenerative medicine goals. Polymeric delivery systems are tools that can control the delivery of nucleic acids and prolong their effects. This review describes the use of polymeric vehicles for the delivery of nucleic acids to ECs for tissue engineering. Impact statement Tissue engineering is a rapidly growing field that has the potential to resolve many disease states and improve the quality of life of patients. In some applications, tissue-engineered strategies or constructs are developed to rebuild spaces damaged by disease or degeneration. To rebuild the native tissue, these constructs may need to interact with unwanted immune activity and cells. Various immune cells are often the focus of therapies as they are critical players in the inflammatory response; however, endothelial cells are also an extremely important and promising target in these cases. In addition, controlled delivery of specific-acting molecules, such as nucleic acids, is of growing interest for the regeneration and health of a variety of different tissues. It is important to understand what has been done and the potential of these targets and therapeutics for future investigation and advancements in tissue engineering.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2023.0296\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2023.0296","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

组织工程和伤口愈合干预措施通常设计用于疾病和炎症环境。在这一领域,内皮细胞(EC)是炎症和愈合的关键调节因子,因为它们是免疫细胞招募和促炎细胞因子产生的主要接触点,而促炎细胞因子可以刺激或减轻炎症。另外,内皮细胞的增殖和扩散可形成新的血管组织或修复受损组织,这对伤口愈合至关重要。用特异性核酸靶向内皮细胞可以减少不必要的炎症,或根据需要促进组织再生,这是许多再生医学目标所涉及的两大问题。聚合物递送系统是可以控制核酸递送并延长其效果的工具。本综述介绍了利用聚合物载体向内皮细胞输送核酸以实现组织工程的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influencing Endothelial Cells' Roles in Inflammation and Wound Healing Through Nucleic Acid Delivery.

Tissue engineering and wound-healing interventions are often designed for use in diseased and inflamed environments. In this space, endothelial cells (ECs) are crucial regulators of inflammation and healing, as they are the primary contact for recruitment of immune cells, as well as production of proinflammatory cytokines, which can stimulate or reduce inflammation. Alternatively, proliferation and spreading of ECs result in the formation of new vascular tissue or repair of damaged tissue, both critical for wound healing. Targeting ECs with specific nucleic acids could reduce unwanted inflammation or promote tissue regeneration as needed, which are two large issues involved in many regenerative medicine goals. Polymeric delivery systems are tools that can control the delivery of nucleic acids and prolong their effects. This review describes the use of polymeric vehicles for the delivery of nucleic acids to ECs for tissue engineering. Impact statement Tissue engineering is a rapidly growing field that has the potential to resolve many disease states and improve the quality of life of patients. In some applications, tissue-engineered strategies or constructs are developed to rebuild spaces damaged by disease or degeneration. To rebuild the native tissue, these constructs may need to interact with unwanted immune activity and cells. Various immune cells are often the focus of therapies as they are critical players in the inflammatory response; however, endothelial cells are also an extremely important and promising target in these cases. In addition, controlled delivery of specific-acting molecules, such as nucleic acids, is of growing interest for the regeneration and health of a variety of different tissues. It is important to understand what has been done and the potential of these targets and therapeutics for future investigation and advancements in tissue engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信