针对血糖变化较大的 2 型糖尿病的新型低血糖警报框架。

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Xinzhuo Wang, Zi Yang, Ning Ma, Xiaoyu Sun, Hongru Li, Jian Zhou, Xia Yu
{"title":"针对血糖变化较大的 2 型糖尿病的新型低血糖警报框架。","authors":"Xinzhuo Wang,&nbsp;Zi Yang,&nbsp;Ning Ma,&nbsp;Xiaoyu Sun,&nbsp;Hongru Li,&nbsp;Jian Zhou,&nbsp;Xia Yu","doi":"10.1002/cnm.3799","DOIUrl":null,"url":null,"abstract":"<p>In patients with type 2 diabetes (T2D), accurate prediction of hypoglycemic events is crucial for maintaining glycemic control and reducing their frequency. However, individuals with high blood glucose variability experience significant fluctuations over time, posing a challenge for early warning models that rely on static features. This article proposes a novel hypoglycemia early alarm framework based on dynamic feature selection. The framework incorporates domain knowledge and introduces multi-scale blood glucose features, including predicted values, essential for early warnings. To address the complexity of the feature matrix, a dynamic feature selection mechanism (Relief-SVM-RFE) is designed to effectively eliminate redundancy. Furthermore, the framework employs online updates for the random forest model, enhancing the learning of more relevant features. The effectiveness of the framework was evaluated using a clinical dataset. For T2D patients with a high coefficient of variation (CV), the framework achieved a sensitivity of 81.15% and specificity of 98.14%, accurately predicting most hypoglycemic events. Notably, the proposed method outperformed other existing approaches. These results indicate the feasibility of anticipating hypoglycemic events in T2D patients with high CV using this innovative framework.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel hypoglycemia alarm framework for type 2 diabetes with high glycemic variability\",\"authors\":\"Xinzhuo Wang,&nbsp;Zi Yang,&nbsp;Ning Ma,&nbsp;Xiaoyu Sun,&nbsp;Hongru Li,&nbsp;Jian Zhou,&nbsp;Xia Yu\",\"doi\":\"10.1002/cnm.3799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In patients with type 2 diabetes (T2D), accurate prediction of hypoglycemic events is crucial for maintaining glycemic control and reducing their frequency. However, individuals with high blood glucose variability experience significant fluctuations over time, posing a challenge for early warning models that rely on static features. This article proposes a novel hypoglycemia early alarm framework based on dynamic feature selection. The framework incorporates domain knowledge and introduces multi-scale blood glucose features, including predicted values, essential for early warnings. To address the complexity of the feature matrix, a dynamic feature selection mechanism (Relief-SVM-RFE) is designed to effectively eliminate redundancy. Furthermore, the framework employs online updates for the random forest model, enhancing the learning of more relevant features. The effectiveness of the framework was evaluated using a clinical dataset. For T2D patients with a high coefficient of variation (CV), the framework achieved a sensitivity of 81.15% and specificity of 98.14%, accurately predicting most hypoglycemic events. Notably, the proposed method outperformed other existing approaches. These results indicate the feasibility of anticipating hypoglycemic events in T2D patients with high CV using this innovative framework.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3799\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3799","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于 2 型糖尿病(T2D)患者来说,准确预测低血糖事件对于维持血糖控制和降低低血糖发生频率至关重要。然而,血糖变异性高的人随着时间的推移会出现明显的波动,这给依赖静态特征的预警模型带来了挑战。本文提出了一种基于动态特征选择的新型低血糖预警框架。该框架结合了领域知识,引入了对预警至关重要的多尺度血糖特征,包括预测值。针对特征矩阵的复杂性,设计了一种动态特征选择机制(Relief-SVM-RFE),以有效消除冗余。此外,该框架还对随机森林模型进行了在线更新,从而加强了对更多相关特征的学习。该框架的有效性通过临床数据集进行了评估。对于变异系数(CV)较高的 T2D 患者,该框架的灵敏度达到 81.15%,特异度达到 98.14%,能准确预测大多数低血糖事件。值得注意的是,所提出的方法优于其他现有方法。这些结果表明,利用这一创新框架预测高CV值的T2D患者低血糖事件是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel hypoglycemia alarm framework for type 2 diabetes with high glycemic variability

A novel hypoglycemia alarm framework for type 2 diabetes with high glycemic variability

A novel hypoglycemia alarm framework for type 2 diabetes with high glycemic variability

In patients with type 2 diabetes (T2D), accurate prediction of hypoglycemic events is crucial for maintaining glycemic control and reducing their frequency. However, individuals with high blood glucose variability experience significant fluctuations over time, posing a challenge for early warning models that rely on static features. This article proposes a novel hypoglycemia early alarm framework based on dynamic feature selection. The framework incorporates domain knowledge and introduces multi-scale blood glucose features, including predicted values, essential for early warnings. To address the complexity of the feature matrix, a dynamic feature selection mechanism (Relief-SVM-RFE) is designed to effectively eliminate redundancy. Furthermore, the framework employs online updates for the random forest model, enhancing the learning of more relevant features. The effectiveness of the framework was evaluated using a clinical dataset. For T2D patients with a high coefficient of variation (CV), the framework achieved a sensitivity of 81.15% and specificity of 98.14%, accurately predicting most hypoglycemic events. Notably, the proposed method outperformed other existing approaches. These results indicate the feasibility of anticipating hypoglycemic events in T2D patients with high CV using this innovative framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信