压力损伤中的铁代谢失调与 CD163 和 Homx-1 信号转导异常有关。

IF 3.8 3区 医学 Q2 CELL BIOLOGY
Wound Repair and Regeneration Pub Date : 2024-05-01 Epub Date: 2024-01-04 DOI:10.1111/wrr.13145
Ju Zhang, Hui Shan, Jinglin Guo, Xiaoying Wang, Weiwei Wang
{"title":"压力损伤中的铁代谢失调与 CD163 和 Homx-1 信号转导异常有关。","authors":"Ju Zhang, Hui Shan, Jinglin Guo, Xiaoying Wang, Weiwei Wang","doi":"10.1111/wrr.13145","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulation of iron metabolism has been associated with impaired chronic wound healing. However, changes in iron metabolism have yet to be reported in pressure injuries, a type of chronic wound. In this study, we aimed to investigate changes in iron metabolism and associated regulatory mechanisms in pressure injuries. We collected tissue biopsies and data from 20 consenting stage IV-pressure injuries patients and 5 non-pressure injuries patients hospitalised at the Affiliated Hospital of Qingdao University between March 2021 and June 2021. In addition, we measured the iron content by inductively coupled plasma mass spectrometry and Prussian blue staining in deep tissue pressure injury mouse models. An Enzyme-linked immune sorbent assay measured the expression of ferritin, ferroportin-1 and transferrin. Immunofluorescence staining, high-throughput transcriptome sequencing, Western blot and RT-qPCR further analysed the fundamental mechanisms regulating iron metabolism. In this study, we observed numerous inflammatory cells infiltrating the marginal tissues of stage IV pressure injury patients and in deep tissue pressure injury models. The expression levels of pro-inflammatory factors, such as inducible nitric oxide synthase and interleukin-6, were significantly increased (p < 0.05). The iron level was proportional to the degree of progression, with the most significant change appearing on the third day in deep tissue pressure injury models (p < 0.05). Enzyme-linked immune sorbent assay results suggested abnormal gene expression was related to iron metabolism, including a substantial increase in ferritin and a significant decrease in the expression of ferroportin-1 (p < 0.05). In addition, immunofluorescence staining and Western blot showed that the expression of macrophage membrane receptor CD163 was abnormally elevated (p < 0.05). Both high-throughput transcriptome sequencing and qRT-PCR results suggested aberrant expression of the CD163/Homx-1-mediated signalling pathway. Dysfunctional iron metabolism was suggested to be related to the aberrant CD163/Homx-1 signalling pathway in deep tissue pressure injury models.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"268-278"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysfunctional iron metabolism in pressure injuries is related to aberrant CD163 and Homx-1 signal transduction.\",\"authors\":\"Ju Zhang, Hui Shan, Jinglin Guo, Xiaoying Wang, Weiwei Wang\",\"doi\":\"10.1111/wrr.13145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysregulation of iron metabolism has been associated with impaired chronic wound healing. However, changes in iron metabolism have yet to be reported in pressure injuries, a type of chronic wound. In this study, we aimed to investigate changes in iron metabolism and associated regulatory mechanisms in pressure injuries. We collected tissue biopsies and data from 20 consenting stage IV-pressure injuries patients and 5 non-pressure injuries patients hospitalised at the Affiliated Hospital of Qingdao University between March 2021 and June 2021. In addition, we measured the iron content by inductively coupled plasma mass spectrometry and Prussian blue staining in deep tissue pressure injury mouse models. An Enzyme-linked immune sorbent assay measured the expression of ferritin, ferroportin-1 and transferrin. Immunofluorescence staining, high-throughput transcriptome sequencing, Western blot and RT-qPCR further analysed the fundamental mechanisms regulating iron metabolism. In this study, we observed numerous inflammatory cells infiltrating the marginal tissues of stage IV pressure injury patients and in deep tissue pressure injury models. The expression levels of pro-inflammatory factors, such as inducible nitric oxide synthase and interleukin-6, were significantly increased (p < 0.05). The iron level was proportional to the degree of progression, with the most significant change appearing on the third day in deep tissue pressure injury models (p < 0.05). Enzyme-linked immune sorbent assay results suggested abnormal gene expression was related to iron metabolism, including a substantial increase in ferritin and a significant decrease in the expression of ferroportin-1 (p < 0.05). In addition, immunofluorescence staining and Western blot showed that the expression of macrophage membrane receptor CD163 was abnormally elevated (p < 0.05). Both high-throughput transcriptome sequencing and qRT-PCR results suggested aberrant expression of the CD163/Homx-1-mediated signalling pathway. Dysfunctional iron metabolism was suggested to be related to the aberrant CD163/Homx-1 signalling pathway in deep tissue pressure injury models.</p>\",\"PeriodicalId\":23864,\"journal\":{\"name\":\"Wound Repair and Regeneration\",\"volume\":\" \",\"pages\":\"268-278\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wound Repair and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/wrr.13145\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Repair and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/wrr.13145","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铁代谢失调与慢性伤口愈合受损有关。然而,在压力伤这种慢性伤口中,铁代谢的变化尚未见报道。在这项研究中,我们旨在调查压力性损伤中铁代谢的变化及相关调节机制。我们收集了 2021 年 3 月至 2021 年 6 月期间在青岛大学附属医院住院的 20 名 IV 期压力伤患者和 5 名非压力伤患者的组织活检和数据。此外,我们还通过电感耦合等离子体质谱法和普鲁士蓝染色法测定了深部组织压伤小鼠模型的铁含量。酶联免疫吸附试验测定了铁蛋白、铁蛋白-1和转铁蛋白的表达。免疫荧光染色、高通量转录组测序、Western 印迹和 RT-qPCR 进一步分析了调节铁代谢的基本机制。在这项研究中,我们观察到大量炎症细胞浸润 IV 期压力损伤患者和深部组织压力损伤模型的边缘组织。诱导型一氧化氮合酶和白细胞介素-6 等促炎因子的表达水平显著增加(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dysfunctional iron metabolism in pressure injuries is related to aberrant CD163 and Homx-1 signal transduction.

Dysregulation of iron metabolism has been associated with impaired chronic wound healing. However, changes in iron metabolism have yet to be reported in pressure injuries, a type of chronic wound. In this study, we aimed to investigate changes in iron metabolism and associated regulatory mechanisms in pressure injuries. We collected tissue biopsies and data from 20 consenting stage IV-pressure injuries patients and 5 non-pressure injuries patients hospitalised at the Affiliated Hospital of Qingdao University between March 2021 and June 2021. In addition, we measured the iron content by inductively coupled plasma mass spectrometry and Prussian blue staining in deep tissue pressure injury mouse models. An Enzyme-linked immune sorbent assay measured the expression of ferritin, ferroportin-1 and transferrin. Immunofluorescence staining, high-throughput transcriptome sequencing, Western blot and RT-qPCR further analysed the fundamental mechanisms regulating iron metabolism. In this study, we observed numerous inflammatory cells infiltrating the marginal tissues of stage IV pressure injury patients and in deep tissue pressure injury models. The expression levels of pro-inflammatory factors, such as inducible nitric oxide synthase and interleukin-6, were significantly increased (p < 0.05). The iron level was proportional to the degree of progression, with the most significant change appearing on the third day in deep tissue pressure injury models (p < 0.05). Enzyme-linked immune sorbent assay results suggested abnormal gene expression was related to iron metabolism, including a substantial increase in ferritin and a significant decrease in the expression of ferroportin-1 (p < 0.05). In addition, immunofluorescence staining and Western blot showed that the expression of macrophage membrane receptor CD163 was abnormally elevated (p < 0.05). Both high-throughput transcriptome sequencing and qRT-PCR results suggested aberrant expression of the CD163/Homx-1-mediated signalling pathway. Dysfunctional iron metabolism was suggested to be related to the aberrant CD163/Homx-1 signalling pathway in deep tissue pressure injury models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wound Repair and Regeneration
Wound Repair and Regeneration 医学-皮肤病学
CiteScore
5.90
自引率
3.40%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Wound Repair and Regeneration provides extensive international coverage of cellular and molecular biology, connective tissue, and biological mediator studies in the field of tissue repair and regeneration and serves a diverse audience of surgeons, plastic surgeons, dermatologists, biochemists, cell biologists, and others. Wound Repair and Regeneration is the official journal of The Wound Healing Society, The European Tissue Repair Society, The Japanese Society for Wound Healing, and The Australian Wound Management Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信