{"title":"千赫兹高频电刺激通过调节坐骨神经慢性收缩损伤小鼠的 TRPV1 和 NMDAR2B 信号通路改善痛觉减退。","authors":"Kexin Fang, Peixin Lu, Wen Cheng, Bin Yu","doi":"10.1177/17448069231225810","DOIUrl":null,"url":null,"abstract":"<p><p>The number of patients with neuropathic pain is increasing in recent years, but drug treatments for neuropathic pain have a low success rate and often come with significant side effects. Consequently, the development of innovative therapeutic strategies has become an urgent necessity. Kilohertz High Frequency Electrical Stimulation (KHES) offers pain relief without inducing paresthesia. However, the specific therapeutic effects of KHES on neuropathic pain and its underlying mechanisms remain ambiguous, warranting further investigation. In our previous study, we utilized the Gene Expression Omnibus (GEO) database to identify datasets related to neuropathic pain mice. The majority of the identified pathways were found to be associated with inflammatory responses. From these pathways, we selected the transient receptor potential vanilloid-1 (TRPV1) and N-methyl-D-aspartate receptor-2B (NMDAR2B) pathway for further exploration. Mice were randomly divided into four groups: a Sham group, a Sham/KHES group, a chronic constriction injury of the sciatic nerve (CCI) group, and a CCI/KHES stimulation group. KHES administered 30 min every day for 1 week. We evaluated the paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL). The expression of TRPV1 and NMDAR2B in the spinal cord were analyzed using quantitative reverse-transcriptase polymerase chain reaction, Western blot, and immunofluorescence assay. KHES significantly alleviated the mechanical and thermal allodynia in neuropathic pain mice. KHES effectively suppressed the expression of TRPV1 and NMDAR2B, consequently inhibiting the activation of glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule 1 (IBA1) in the spinal cord. The administration of the TRPV1 pathway activator partially reversed the antinociceptive effects of KHES, while the TRPV1 pathway inhibitor achieved analgesic effects similar to KHES. KHES inhibited the activation of spinal dorsal horn glial cells, especially astrocytes and microglia, by inhibiting the activation of the TRPV1/NMDAR2B signaling pathway, ultimately alleviating neuropathic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069231225810"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851768/pdf/","citationCount":"0","resultStr":"{\"title\":\"Kilohertz high-frequency electrical stimulation ameliorate hyperalgesia by modulating transient receptor potential vanilloid-1 and N-methyl-D-aspartate receptor-2B signaling pathways in chronic constriction injury of sciatic nerve mice.\",\"authors\":\"Kexin Fang, Peixin Lu, Wen Cheng, Bin Yu\",\"doi\":\"10.1177/17448069231225810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The number of patients with neuropathic pain is increasing in recent years, but drug treatments for neuropathic pain have a low success rate and often come with significant side effects. Consequently, the development of innovative therapeutic strategies has become an urgent necessity. Kilohertz High Frequency Electrical Stimulation (KHES) offers pain relief without inducing paresthesia. However, the specific therapeutic effects of KHES on neuropathic pain and its underlying mechanisms remain ambiguous, warranting further investigation. In our previous study, we utilized the Gene Expression Omnibus (GEO) database to identify datasets related to neuropathic pain mice. The majority of the identified pathways were found to be associated with inflammatory responses. From these pathways, we selected the transient receptor potential vanilloid-1 (TRPV1) and N-methyl-D-aspartate receptor-2B (NMDAR2B) pathway for further exploration. Mice were randomly divided into four groups: a Sham group, a Sham/KHES group, a chronic constriction injury of the sciatic nerve (CCI) group, and a CCI/KHES stimulation group. KHES administered 30 min every day for 1 week. We evaluated the paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL). The expression of TRPV1 and NMDAR2B in the spinal cord were analyzed using quantitative reverse-transcriptase polymerase chain reaction, Western blot, and immunofluorescence assay. KHES significantly alleviated the mechanical and thermal allodynia in neuropathic pain mice. KHES effectively suppressed the expression of TRPV1 and NMDAR2B, consequently inhibiting the activation of glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule 1 (IBA1) in the spinal cord. The administration of the TRPV1 pathway activator partially reversed the antinociceptive effects of KHES, while the TRPV1 pathway inhibitor achieved analgesic effects similar to KHES. KHES inhibited the activation of spinal dorsal horn glial cells, especially astrocytes and microglia, by inhibiting the activation of the TRPV1/NMDAR2B signaling pathway, ultimately alleviating neuropathic pain.</p>\",\"PeriodicalId\":19010,\"journal\":{\"name\":\"Molecular Pain\",\"volume\":\" \",\"pages\":\"17448069231225810\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851768/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069231225810\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069231225810","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Kilohertz high-frequency electrical stimulation ameliorate hyperalgesia by modulating transient receptor potential vanilloid-1 and N-methyl-D-aspartate receptor-2B signaling pathways in chronic constriction injury of sciatic nerve mice.
The number of patients with neuropathic pain is increasing in recent years, but drug treatments for neuropathic pain have a low success rate and often come with significant side effects. Consequently, the development of innovative therapeutic strategies has become an urgent necessity. Kilohertz High Frequency Electrical Stimulation (KHES) offers pain relief without inducing paresthesia. However, the specific therapeutic effects of KHES on neuropathic pain and its underlying mechanisms remain ambiguous, warranting further investigation. In our previous study, we utilized the Gene Expression Omnibus (GEO) database to identify datasets related to neuropathic pain mice. The majority of the identified pathways were found to be associated with inflammatory responses. From these pathways, we selected the transient receptor potential vanilloid-1 (TRPV1) and N-methyl-D-aspartate receptor-2B (NMDAR2B) pathway for further exploration. Mice were randomly divided into four groups: a Sham group, a Sham/KHES group, a chronic constriction injury of the sciatic nerve (CCI) group, and a CCI/KHES stimulation group. KHES administered 30 min every day for 1 week. We evaluated the paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL). The expression of TRPV1 and NMDAR2B in the spinal cord were analyzed using quantitative reverse-transcriptase polymerase chain reaction, Western blot, and immunofluorescence assay. KHES significantly alleviated the mechanical and thermal allodynia in neuropathic pain mice. KHES effectively suppressed the expression of TRPV1 and NMDAR2B, consequently inhibiting the activation of glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule 1 (IBA1) in the spinal cord. The administration of the TRPV1 pathway activator partially reversed the antinociceptive effects of KHES, while the TRPV1 pathway inhibitor achieved analgesic effects similar to KHES. KHES inhibited the activation of spinal dorsal horn glial cells, especially astrocytes and microglia, by inhibiting the activation of the TRPV1/NMDAR2B signaling pathway, ultimately alleviating neuropathic pain.
期刊介绍:
Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.