Hongyan Zhang, Xuezhi Kang, Jun Ruan, Li Ma, Wenbo Peng, Haonan Shang, Bing Wang, Yongning Sun
{"title":"麦冬呋喃黄酮D通过Keap1/Nrf2/ARE途径改善糖尿病患者胰腺β细胞在过氧化氢诱导下的氧化应激和线粒体功能障碍","authors":"Hongyan Zhang, Xuezhi Kang, Jun Ruan, Li Ma, Wenbo Peng, Haonan Shang, Bing Wang, Yongning Sun","doi":"10.4103/cjop.CJOP-D-23-00069","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a metabolic disease characterized by high blood sugar. Due to its complex pathogenesis, no effective drugs have been found so far. Ophiopogonin D (OP-D) has anti-inflammatory, antioxidant, and anticancer activities, but its role in DM has not been studied so far. Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was used to induce INS-1 cells. INS-1 cells induced by H<sub>2</sub>O<sub>2</sub> were treated with OP-D, and cell apoptosis, oxidative stress damage, and related indexes of mitochondrial function were respectively detected by cell counting kit-8, flow cytometry, western blot, enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, JC-1 fluorescent probe, and related kits. Subsequently, molecular docking techniques were used to investigate the relationship between OP-D and Keap1 and to explore the regulation mechanism of OP-D on H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and mitochondrial function in INS-1 cells. OP-D inhibited the apoptosis and oxidative stress level of H<sub>2</sub>O<sub>2</sub>-induced INS-1 cells, thereby inhibiting cell damage. Moreover, OP-D inhibited mitochondrial dysfunction in H<sub>2</sub>O<sub>2</sub>-induced INS-1 cells. At last, we found that Keap1/Nrf2 specific signaling pathway inhibitor ML385 was able to reverse the inhibitory effect of OP-D on H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and mitochondrial dysfunction in INS-1 cells. In conclusion, OP-D improves oxidative stress and mitochondrial dysfunction in pancreatic β cells induced by H<sub>2</sub>O<sub>2</sub> through activating Keap1/Nrf2/ARE pathway in DM.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ophiopogonin D improves oxidative stress and mitochondrial dysfunction in pancreatic β cells induced by hydrogen peroxide through Keap1/Nrf2/ARE pathway in diabetes mellitus.\",\"authors\":\"Hongyan Zhang, Xuezhi Kang, Jun Ruan, Li Ma, Wenbo Peng, Haonan Shang, Bing Wang, Yongning Sun\",\"doi\":\"10.4103/cjop.CJOP-D-23-00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) is a metabolic disease characterized by high blood sugar. Due to its complex pathogenesis, no effective drugs have been found so far. Ophiopogonin D (OP-D) has anti-inflammatory, antioxidant, and anticancer activities, but its role in DM has not been studied so far. Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was used to induce INS-1 cells. INS-1 cells induced by H<sub>2</sub>O<sub>2</sub> were treated with OP-D, and cell apoptosis, oxidative stress damage, and related indexes of mitochondrial function were respectively detected by cell counting kit-8, flow cytometry, western blot, enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, JC-1 fluorescent probe, and related kits. Subsequently, molecular docking techniques were used to investigate the relationship between OP-D and Keap1 and to explore the regulation mechanism of OP-D on H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and mitochondrial function in INS-1 cells. OP-D inhibited the apoptosis and oxidative stress level of H<sub>2</sub>O<sub>2</sub>-induced INS-1 cells, thereby inhibiting cell damage. Moreover, OP-D inhibited mitochondrial dysfunction in H<sub>2</sub>O<sub>2</sub>-induced INS-1 cells. At last, we found that Keap1/Nrf2 specific signaling pathway inhibitor ML385 was able to reverse the inhibitory effect of OP-D on H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and mitochondrial dysfunction in INS-1 cells. In conclusion, OP-D improves oxidative stress and mitochondrial dysfunction in pancreatic β cells induced by H<sub>2</sub>O<sub>2</sub> through activating Keap1/Nrf2/ARE pathway in DM.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/cjop.CJOP-D-23-00069\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjop.CJOP-D-23-00069","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ophiopogonin D improves oxidative stress and mitochondrial dysfunction in pancreatic β cells induced by hydrogen peroxide through Keap1/Nrf2/ARE pathway in diabetes mellitus.
Diabetes mellitus (DM) is a metabolic disease characterized by high blood sugar. Due to its complex pathogenesis, no effective drugs have been found so far. Ophiopogonin D (OP-D) has anti-inflammatory, antioxidant, and anticancer activities, but its role in DM has not been studied so far. Hydrogen peroxide (H2O2) was used to induce INS-1 cells. INS-1 cells induced by H2O2 were treated with OP-D, and cell apoptosis, oxidative stress damage, and related indexes of mitochondrial function were respectively detected by cell counting kit-8, flow cytometry, western blot, enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, JC-1 fluorescent probe, and related kits. Subsequently, molecular docking techniques were used to investigate the relationship between OP-D and Keap1 and to explore the regulation mechanism of OP-D on H2O2-induced oxidative stress and mitochondrial function in INS-1 cells. OP-D inhibited the apoptosis and oxidative stress level of H2O2-induced INS-1 cells, thereby inhibiting cell damage. Moreover, OP-D inhibited mitochondrial dysfunction in H2O2-induced INS-1 cells. At last, we found that Keap1/Nrf2 specific signaling pathway inhibitor ML385 was able to reverse the inhibitory effect of OP-D on H2O2-induced oxidative stress and mitochondrial dysfunction in INS-1 cells. In conclusion, OP-D improves oxidative stress and mitochondrial dysfunction in pancreatic β cells induced by H2O2 through activating Keap1/Nrf2/ARE pathway in DM.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.