长非编码 RNA NBR2 通过下调 miR-19a 来调控 M2 巨噬细胞的极化,从而抑制结直肠癌的进展。

IF 1.4 4区 医学 Q4 PHYSIOLOGY
Xiaoting Yang, Ye Luo, Mengying Li, Zhan Jin, Gao Chen, Chunchun Gan
{"title":"长非编码 RNA NBR2 通过下调 miR-19a 来调控 M2 巨噬细胞的极化,从而抑制结直肠癌的进展。","authors":"Xiaoting Yang, Ye Luo, Mengying Li, Zhan Jin, Gao Chen, Chunchun Gan","doi":"10.4103/cjop.CJOP-D-23-00064","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract that significantly impacts the health of patients and lacks promising methods of diagnosis. Tumor-associated macrophages (TAMs) are involved in CRC progression, and their function is regulated by long non-coding RNAs (lncRNAs). The lncRNA NBR2 was recently reported as an oncogene, whose function in CRC remains uncertain. The present study aimed to investigate the biological function of lncRNA NBR2 in the progression of CRC and its underlying molecular mechanisms. Ten pairs of clinical CRC and para-carcinoma tissues were collected to determine the expression levels of lncRNA NBR2 and miR-19a, and the polarization state of TAMs. Quantitative reverse transcriptase-polymerase chain reaction was used to evaluate the expression of miR-19a, and western blotting was used to determine the expression levels of tumor necrosis factor-α, human leukocyte antigen-DR, arginase-1, CD163, CD206, interleukin-4, AMP-activated protein kinase (AMPK), p-AMPK, hypoxia-inducible factor-1α (HIF-1α), protein kinase B (AKT), p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR in TAMs. The proliferative ability of HCT-116 cells was detected using the CCK8 assay, and the migratory ability of HCT-116 cells was evaluated using the Transwell assay. The interaction between lncRNA NBR2 and miR-19a was determined using the luciferase assay. The lncRNA NBR2 was downregulated and miR-19a was highly expressed in CRC cells, accompanied by a high M2 polarization. Downregulated miR-19a promoted M1 polarization, activated AMPK, suppressed HIF-1α and AKT/mTOR signaling pathways, and promoted antitumor properties in NBR2-overexpressed TAMs, which were all reversed by the introduction of the miR-19a mimic. LncRNA NBR2 was verified to target miR-19a in macrophages according to the results of the luciferase assay. Collectively, lncRNA NBR2 may suppress the progression of CRC by downregulating miR-19a to regulate M2 macrophage polarization.</p>","PeriodicalId":10251,"journal":{"name":"Chinese Journal of Physiology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long non-coding RNA NBR2 suppresses the progression of colorectal cancer by downregulating miR-19a to regulate M2 macrophage polarization.\",\"authors\":\"Xiaoting Yang, Ye Luo, Mengying Li, Zhan Jin, Gao Chen, Chunchun Gan\",\"doi\":\"10.4103/cjop.CJOP-D-23-00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract that significantly impacts the health of patients and lacks promising methods of diagnosis. Tumor-associated macrophages (TAMs) are involved in CRC progression, and their function is regulated by long non-coding RNAs (lncRNAs). The lncRNA NBR2 was recently reported as an oncogene, whose function in CRC remains uncertain. The present study aimed to investigate the biological function of lncRNA NBR2 in the progression of CRC and its underlying molecular mechanisms. Ten pairs of clinical CRC and para-carcinoma tissues were collected to determine the expression levels of lncRNA NBR2 and miR-19a, and the polarization state of TAMs. Quantitative reverse transcriptase-polymerase chain reaction was used to evaluate the expression of miR-19a, and western blotting was used to determine the expression levels of tumor necrosis factor-α, human leukocyte antigen-DR, arginase-1, CD163, CD206, interleukin-4, AMP-activated protein kinase (AMPK), p-AMPK, hypoxia-inducible factor-1α (HIF-1α), protein kinase B (AKT), p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR in TAMs. The proliferative ability of HCT-116 cells was detected using the CCK8 assay, and the migratory ability of HCT-116 cells was evaluated using the Transwell assay. The interaction between lncRNA NBR2 and miR-19a was determined using the luciferase assay. The lncRNA NBR2 was downregulated and miR-19a was highly expressed in CRC cells, accompanied by a high M2 polarization. Downregulated miR-19a promoted M1 polarization, activated AMPK, suppressed HIF-1α and AKT/mTOR signaling pathways, and promoted antitumor properties in NBR2-overexpressed TAMs, which were all reversed by the introduction of the miR-19a mimic. LncRNA NBR2 was verified to target miR-19a in macrophages according to the results of the luciferase assay. Collectively, lncRNA NBR2 may suppress the progression of CRC by downregulating miR-19a to regulate M2 macrophage polarization.</p>\",\"PeriodicalId\":10251,\"journal\":{\"name\":\"Chinese Journal of Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/cjop.CJOP-D-23-00064\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjop.CJOP-D-23-00064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结肠直肠癌(CRC)是一种胃肠道恶性肿瘤,严重影响患者的健康,而且缺乏有效的诊断方法。肿瘤相关巨噬细胞(TAMs)参与了 CRC 的进展,其功能受长非编码 RNA(lncRNA)的调控。最近有报道称lncRNA NBR2是一种癌基因,但其在CRC中的功能仍不确定。本研究旨在探讨lncRNA NBR2在CRC进展中的生物学功能及其潜在的分子机制。本研究收集了10对临床CRC和癌旁组织,测定了lncRNA NBR2和miR-19a的表达水平以及TAMs的极化状态。采用定量反转录聚合酶链反应评估 miR-19a 的表达,采用免疫印迹法测定肿瘤坏死因子-α、人类白细胞抗原-DR、采用免疫印迹法测定 TAMs 中肿瘤坏死因子-α、人类白细胞抗原-DR、精氨酸酶-1、CD163、CD206、白细胞介素-4、AMP-活化蛋白激酶(AMPK)、p-AMPK、缺氧诱导因子-1α(HIF-1α)、蛋白激酶 B(AKT)、p-AKT、雷帕霉素机制靶标(mTOR)和 p-mTOR 的表达水平。CCK8试验检测了HCT-116细胞的增殖能力,Transwell试验评估了HCT-116细胞的迁移能力。荧光素酶试验测定了lncRNA NBR2与miR-19a之间的相互作用。结果显示,lncRNA NBR2在CRC细胞中下调,miR-19a在细胞中高表达,并伴有高度的M2极化。下调的miR-19a促进了M1极化,激活了AMPK,抑制了HIF-1α和AKT/mTOR信号通路,并促进了NBR2表达的TAMs的抗肿瘤特性。根据荧光素酶实验的结果,证实了LncRNA NBR2在巨噬细胞中靶向miR-19a。总之,lncRNA NBR2可能通过下调miR-19a来调节M2巨噬细胞的极化,从而抑制CRC的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long non-coding RNA NBR2 suppresses the progression of colorectal cancer by downregulating miR-19a to regulate M2 macrophage polarization.

Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract that significantly impacts the health of patients and lacks promising methods of diagnosis. Tumor-associated macrophages (TAMs) are involved in CRC progression, and their function is regulated by long non-coding RNAs (lncRNAs). The lncRNA NBR2 was recently reported as an oncogene, whose function in CRC remains uncertain. The present study aimed to investigate the biological function of lncRNA NBR2 in the progression of CRC and its underlying molecular mechanisms. Ten pairs of clinical CRC and para-carcinoma tissues were collected to determine the expression levels of lncRNA NBR2 and miR-19a, and the polarization state of TAMs. Quantitative reverse transcriptase-polymerase chain reaction was used to evaluate the expression of miR-19a, and western blotting was used to determine the expression levels of tumor necrosis factor-α, human leukocyte antigen-DR, arginase-1, CD163, CD206, interleukin-4, AMP-activated protein kinase (AMPK), p-AMPK, hypoxia-inducible factor-1α (HIF-1α), protein kinase B (AKT), p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR in TAMs. The proliferative ability of HCT-116 cells was detected using the CCK8 assay, and the migratory ability of HCT-116 cells was evaluated using the Transwell assay. The interaction between lncRNA NBR2 and miR-19a was determined using the luciferase assay. The lncRNA NBR2 was downregulated and miR-19a was highly expressed in CRC cells, accompanied by a high M2 polarization. Downregulated miR-19a promoted M1 polarization, activated AMPK, suppressed HIF-1α and AKT/mTOR signaling pathways, and promoted antitumor properties in NBR2-overexpressed TAMs, which were all reversed by the introduction of the miR-19a mimic. LncRNA NBR2 was verified to target miR-19a in macrophages according to the results of the luciferase assay. Collectively, lncRNA NBR2 may suppress the progression of CRC by downregulating miR-19a to regulate M2 macrophage polarization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
5.60%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Chinese Journal of Physiology is a multidisciplinary open access journal. Chinese Journal of Physiology (CJP) publishes high quality original research papers in physiology and pathophysiology by authors all over the world. CJP welcomes submitted research papers in all aspects of physiology science in the molecular, cellular, tissue and systemic levels. Multidisciplinary sciences with a focus to understand the role of physiology in health and disease are also encouraged. Chinese Journal of Physiology accepts fourfold article types: Original Article, Review Article (Mini-Review included), Short Communication, and Editorial. There is no cost for readers to access the full-text contents of publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信