淫羊藿苷II通过Keap1/Nrf2/GPX4信号传导抑制铁突变以防止MPP+诱导的帕金森病。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenbo Fan, Jianwu Zhou
{"title":"淫羊藿苷II通过Keap1/Nrf2/GPX4信号传导抑制铁突变以防止MPP+诱导的帕金森病。","authors":"Wenbo Fan, Jianwu Zhou","doi":"10.4103/cjop.CJOP-D-23-00107","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is recognized as a degenerative and debilitating neurodegenerative disorder. The novel protective role of icariside II (ICS II) as a plant-derived flavonoid compound in neurodegenerative diseases has aroused much attention. Herein, the definite impacts of ICS II on the process of PD and the relevant action mechanism were studied. Human neuroblastoma SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium ion (MPP<sup>+</sup>) to construct the PD cell model. MTT assay and flow cytometry analysis, respectively, appraised cell viability and apoptosis. Caspase 3 Activity Assay examined caspase 3 activity. Corresponding kits examined oxidative stress levels. BODIPY 581/591 C11 assay evaluated lipid reactive oxygen species. Iron Assay Kit assessed iron content. Western blot tested the expression of apoptosis-, ferroptosis- and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling-associated proteins. Molecular docking verified the binding of ICS II with Keap1. The existing experimental results unveiled that ICS II elevated the viability whereas reduced the apoptosis, oxidative stress, and ferroptosis in MPP<sup>+</sup>-treated SK-N-SH cells in a concentration-dependent manner. Furthermore, ICS II declined Keap1 expression while raised Nrf2, heme oxygenase 1, and GPX4 expression. In addition, ICS II had a strong binding with Keap1 and Nrf2 inhibitor ML385 partially abolished the suppressive role of ICS II in MPP<sup>+</sup>-triggered apoptosis, oxidative stress, and ferroptosis in SK-N-SH cells. To summarize, ICS II might inhibit apoptosis, oxidative stress, and ferroptosis in the MPP<sup>+</sup>-stimulated PD cell model, which might be due to the activation of Keap1/Nrf2/GPX4 signaling.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Icariside II suppresses ferroptosis to protect against MPP<sup>+</sup>-Induced Parkinson's disease through Keap1/Nrf2/GPX4 signaling.\",\"authors\":\"Wenbo Fan, Jianwu Zhou\",\"doi\":\"10.4103/cjop.CJOP-D-23-00107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is recognized as a degenerative and debilitating neurodegenerative disorder. The novel protective role of icariside II (ICS II) as a plant-derived flavonoid compound in neurodegenerative diseases has aroused much attention. Herein, the definite impacts of ICS II on the process of PD and the relevant action mechanism were studied. Human neuroblastoma SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium ion (MPP<sup>+</sup>) to construct the PD cell model. MTT assay and flow cytometry analysis, respectively, appraised cell viability and apoptosis. Caspase 3 Activity Assay examined caspase 3 activity. Corresponding kits examined oxidative stress levels. BODIPY 581/591 C11 assay evaluated lipid reactive oxygen species. Iron Assay Kit assessed iron content. Western blot tested the expression of apoptosis-, ferroptosis- and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling-associated proteins. Molecular docking verified the binding of ICS II with Keap1. The existing experimental results unveiled that ICS II elevated the viability whereas reduced the apoptosis, oxidative stress, and ferroptosis in MPP<sup>+</sup>-treated SK-N-SH cells in a concentration-dependent manner. Furthermore, ICS II declined Keap1 expression while raised Nrf2, heme oxygenase 1, and GPX4 expression. In addition, ICS II had a strong binding with Keap1 and Nrf2 inhibitor ML385 partially abolished the suppressive role of ICS II in MPP<sup>+</sup>-triggered apoptosis, oxidative stress, and ferroptosis in SK-N-SH cells. To summarize, ICS II might inhibit apoptosis, oxidative stress, and ferroptosis in the MPP<sup>+</sup>-stimulated PD cell model, which might be due to the activation of Keap1/Nrf2/GPX4 signaling.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/cjop.CJOP-D-23-00107\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjop.CJOP-D-23-00107","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(Parkinson's disease,PD)被认为是一种退行性神经退行性疾病。作为一种植物黄酮类化合物,冰片苷 II(ICS II)在神经退行性疾病中的新型保护作用引起了广泛关注。本文研究了冰片苷 II 对神经退行性疾病过程的明确影响及相关作用机制。用 1-甲基-4-苯基吡啶鎓离子(MPP+)挑战人神经母细胞瘤 SK-N-SH 细胞,构建 PD 细胞模型。MTT 检测和流式细胞术分析分别评估了细胞活力和凋亡情况。Caspase 3 活性测定检测了 Caspase 3 的活性。相应的试剂盒检测氧化应激水平。BODIPY 581/591 C11 检测法评估脂质活性氧。铁测定试剂盒评估铁含量。Western 印迹检测了细胞凋亡、铁凋亡和 Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) 信号相关蛋白的表达。分子对接验证了 ICS II 与 Keap1 的结合。现有的实验结果表明,ICS II以浓度依赖的方式提高了MPP+处理的SK-N-SH细胞的活力,同时降低了细胞凋亡、氧化应激和铁凋亡。此外,ICS II 还降低了 Keap1 的表达,同时提高了 Nrf2、血红素加氧酶 1 和 GPX4 的表达。此外,ICS II 与 Keap1 有很强的结合力,Nrf2 抑制剂 ML385 可部分消除 ICS II 在 MPP+ 触发的 SK-N-SH 细胞凋亡、氧化应激和铁变态反应中的抑制作用。综上所述,在MPP+刺激的PD细胞模型中,ICS II可能会抑制细胞凋亡、氧化应激和铁突变,这可能是由于Keap1/Nrf2/GPX4信号的激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Icariside II suppresses ferroptosis to protect against MPP+-Induced Parkinson's disease through Keap1/Nrf2/GPX4 signaling.

Parkinson's disease (PD) is recognized as a degenerative and debilitating neurodegenerative disorder. The novel protective role of icariside II (ICS II) as a plant-derived flavonoid compound in neurodegenerative diseases has aroused much attention. Herein, the definite impacts of ICS II on the process of PD and the relevant action mechanism were studied. Human neuroblastoma SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium ion (MPP+) to construct the PD cell model. MTT assay and flow cytometry analysis, respectively, appraised cell viability and apoptosis. Caspase 3 Activity Assay examined caspase 3 activity. Corresponding kits examined oxidative stress levels. BODIPY 581/591 C11 assay evaluated lipid reactive oxygen species. Iron Assay Kit assessed iron content. Western blot tested the expression of apoptosis-, ferroptosis- and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling-associated proteins. Molecular docking verified the binding of ICS II with Keap1. The existing experimental results unveiled that ICS II elevated the viability whereas reduced the apoptosis, oxidative stress, and ferroptosis in MPP+-treated SK-N-SH cells in a concentration-dependent manner. Furthermore, ICS II declined Keap1 expression while raised Nrf2, heme oxygenase 1, and GPX4 expression. In addition, ICS II had a strong binding with Keap1 and Nrf2 inhibitor ML385 partially abolished the suppressive role of ICS II in MPP+-triggered apoptosis, oxidative stress, and ferroptosis in SK-N-SH cells. To summarize, ICS II might inhibit apoptosis, oxidative stress, and ferroptosis in the MPP+-stimulated PD cell model, which might be due to the activation of Keap1/Nrf2/GPX4 signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信