用于光谱稳定发光二极管的熵驱动强致密低毒纯红包晶量子点。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jie Guo, Yuhao Fu, Weijia Zheng*, Mingyuan Xie, Yuchao Huang, Zeyu Miao, Ce Han, Wenxu Yin, Jiaqi Zhang, Xuyong Yang, Jianjun Tian and Xiaoyu Zhang*, 
{"title":"用于光谱稳定发光二极管的熵驱动强致密低毒纯红包晶量子点。","authors":"Jie Guo,&nbsp;Yuhao Fu,&nbsp;Weijia Zheng*,&nbsp;Mingyuan Xie,&nbsp;Yuchao Huang,&nbsp;Zeyu Miao,&nbsp;Ce Han,&nbsp;Wenxu Yin,&nbsp;Jiaqi Zhang,&nbsp;Xuyong Yang,&nbsp;Jianjun Tian and Xiaoyu Zhang*,&nbsp;","doi":"10.1021/acs.nanolett.3c04214","DOIUrl":null,"url":null,"abstract":"<p >Spectrally stable pure-red perovskite quantum dots (QDs) with low lead content are essential for high-definition displays but are difficult to synthesize due to QD self-purification. Here, we make use of entropy-driven quantum-confined pure-red perovskite QDs to fabricate light-emitting diodes (LEDs) that have low toxicity and are efficient and spectrum-stable. Based on experimental data and first-principles calculations, multiple element alloying results in a 60% reduction in lead content while improving QD entropy to promote crystal stability. Entropy-driven QDs exhibit photoluminescence with 100% quantum yields and single-exponential decay lifetimes without alteration of their morphology or crystal structure. The pure-red LEDs utilizing entropy-driven QDs have spectrally stable electroluminescence, achieving a brightness of 4932 cd/m<sup>2</sup>, a maximum external quantum efficiency of over 20%, and a 15-fold longer operational lifetime than the CsPbI<sub>3</sub> QD-based LEDs. These achievements demonstrate that entropy-driven QDs can mitigate local compositional heterogeneity and ion migration.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 1","pages":"417–423"},"PeriodicalIF":9.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy-Driven Strongly Confined Low-Toxicity Pure-Red Perovskite Quantum Dots for Spectrally Stable Light-Emitting Diodes\",\"authors\":\"Jie Guo,&nbsp;Yuhao Fu,&nbsp;Weijia Zheng*,&nbsp;Mingyuan Xie,&nbsp;Yuchao Huang,&nbsp;Zeyu Miao,&nbsp;Ce Han,&nbsp;Wenxu Yin,&nbsp;Jiaqi Zhang,&nbsp;Xuyong Yang,&nbsp;Jianjun Tian and Xiaoyu Zhang*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.3c04214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Spectrally stable pure-red perovskite quantum dots (QDs) with low lead content are essential for high-definition displays but are difficult to synthesize due to QD self-purification. Here, we make use of entropy-driven quantum-confined pure-red perovskite QDs to fabricate light-emitting diodes (LEDs) that have low toxicity and are efficient and spectrum-stable. Based on experimental data and first-principles calculations, multiple element alloying results in a 60% reduction in lead content while improving QD entropy to promote crystal stability. Entropy-driven QDs exhibit photoluminescence with 100% quantum yields and single-exponential decay lifetimes without alteration of their morphology or crystal structure. The pure-red LEDs utilizing entropy-driven QDs have spectrally stable electroluminescence, achieving a brightness of 4932 cd/m<sup>2</sup>, a maximum external quantum efficiency of over 20%, and a 15-fold longer operational lifetime than the CsPbI<sub>3</sub> QD-based LEDs. These achievements demonstrate that entropy-driven QDs can mitigate local compositional heterogeneity and ion migration.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 1\",\"pages\":\"417–423\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04214\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04214","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光谱稳定、铅含量低的纯红色高纯度量子点(QDs)是高清显示器的关键,但由于 QDs 的自纯化问题而难以合成。在这里,我们利用熵驱动的量子约束纯红色包晶量子点来制造低毒、高效和光谱稳定的发光二极管(LED)。根据实验数据和第一原理计算,多元素合金化可使铅含量降低 60%,同时改善 QD 的熵,从而提高晶体稳定性。熵驱动的 QD 发出的光致发光具有 100% 的量子产率和单指数衰减寿命,且不改变其形态或晶体结构。利用熵驱动 QD 的纯红色 LED 具有光谱稳定的电致发光,亮度达到 4932 cd/m2,最大外部量子效率超过 20%,工作寿命比基于 CsPbI3 QD 的 LED 长 15 倍。这些成果表明,熵驱动的 QD 可以减轻局部成分异质性和离子迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Entropy-Driven Strongly Confined Low-Toxicity Pure-Red Perovskite Quantum Dots for Spectrally Stable Light-Emitting Diodes

Entropy-Driven Strongly Confined Low-Toxicity Pure-Red Perovskite Quantum Dots for Spectrally Stable Light-Emitting Diodes

Entropy-Driven Strongly Confined Low-Toxicity Pure-Red Perovskite Quantum Dots for Spectrally Stable Light-Emitting Diodes

Spectrally stable pure-red perovskite quantum dots (QDs) with low lead content are essential for high-definition displays but are difficult to synthesize due to QD self-purification. Here, we make use of entropy-driven quantum-confined pure-red perovskite QDs to fabricate light-emitting diodes (LEDs) that have low toxicity and are efficient and spectrum-stable. Based on experimental data and first-principles calculations, multiple element alloying results in a 60% reduction in lead content while improving QD entropy to promote crystal stability. Entropy-driven QDs exhibit photoluminescence with 100% quantum yields and single-exponential decay lifetimes without alteration of their morphology or crystal structure. The pure-red LEDs utilizing entropy-driven QDs have spectrally stable electroluminescence, achieving a brightness of 4932 cd/m2, a maximum external quantum efficiency of over 20%, and a 15-fold longer operational lifetime than the CsPbI3 QD-based LEDs. These achievements demonstrate that entropy-driven QDs can mitigate local compositional heterogeneity and ion migration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信