Shriram Patel, Eugenia Becker, Corinne Ploix, Guido Steiner, Petar Scepanovic, Matthias Fueth, Maria Cristina de Vera Mudry, Anne Eichinger-Chapelon, Estelle Marrer-Berger, Marcus J Claesson
{"title":"肠道微生物群与抗 PD-1 治疗的非肥胖糖尿病小鼠 1 型糖尿病的发病和严重程度有关。","authors":"Shriram Patel, Eugenia Becker, Corinne Ploix, Guido Steiner, Petar Scepanovic, Matthias Fueth, Maria Cristina de Vera Mudry, Anne Eichinger-Chapelon, Estelle Marrer-Berger, Marcus J Claesson","doi":"10.4049/immunohorizons.2300103","DOIUrl":null,"url":null,"abstract":"<p><p>Our bodies are home to individual-specific microbial ecosystems that have recently been found to be modified by cancer immunotherapies. The interaction between the gut microbiome and islet autoimmunity leading to type I diabetes (T1D) is well described and highlights the microbiome contribution during the onset and T1D development in animals and humans. As cancer immunotherapies induce gut microbiome perturbations and immune-mediated adverse events in susceptible patients, we hypothesized that NOD mice can be used as a predictive tool to investigate the effects of anti-PD-1 treatment on the onset and severity of T1D, and how microbiota influences immunopathology. In this longitudinal study, we showed that anti-PD-1 accelerated T1D onset, increased glutamic acid decarboxylase-reactive T cell frequency in spleen, and precipitated destruction of β cells, triggering high glucose levels and pancreatic islet reduction. Anti-PD-1 treatment also resulted in temporal microbiota changes and lower diversity characteristic of T1D. Finally, we identified known insulin-resistance regulating bacteria that were negatively correlated with glucose levels, indicating that anti-PD-1 treatment impacts the early gut microbiota composition. Moreover, an increase of mucin-degrading Akkermansia muciniphila points to alterations of barrier function and immune system activation. These results highlight the ability of microbiota to readily respond to therapy-triggered pathophysiological changes as rescuers (Bacteroides acidifaciens and Parabacteroides goldsteinii) or potential exacerbators (A. muciniphila). Microbiome-modulating interventions may thus be promising mitigation strategies for immunotherapies with high risk of immune-mediated adverse events.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"7 12","pages":"872-885"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759162/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gut Microbiota Is Associated with Onset and Severity of Type 1 Diabetes in Nonobese Diabetic Mice Treated with Anti-PD-1.\",\"authors\":\"Shriram Patel, Eugenia Becker, Corinne Ploix, Guido Steiner, Petar Scepanovic, Matthias Fueth, Maria Cristina de Vera Mudry, Anne Eichinger-Chapelon, Estelle Marrer-Berger, Marcus J Claesson\",\"doi\":\"10.4049/immunohorizons.2300103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our bodies are home to individual-specific microbial ecosystems that have recently been found to be modified by cancer immunotherapies. The interaction between the gut microbiome and islet autoimmunity leading to type I diabetes (T1D) is well described and highlights the microbiome contribution during the onset and T1D development in animals and humans. As cancer immunotherapies induce gut microbiome perturbations and immune-mediated adverse events in susceptible patients, we hypothesized that NOD mice can be used as a predictive tool to investigate the effects of anti-PD-1 treatment on the onset and severity of T1D, and how microbiota influences immunopathology. In this longitudinal study, we showed that anti-PD-1 accelerated T1D onset, increased glutamic acid decarboxylase-reactive T cell frequency in spleen, and precipitated destruction of β cells, triggering high glucose levels and pancreatic islet reduction. Anti-PD-1 treatment also resulted in temporal microbiota changes and lower diversity characteristic of T1D. Finally, we identified known insulin-resistance regulating bacteria that were negatively correlated with glucose levels, indicating that anti-PD-1 treatment impacts the early gut microbiota composition. Moreover, an increase of mucin-degrading Akkermansia muciniphila points to alterations of barrier function and immune system activation. These results highlight the ability of microbiota to readily respond to therapy-triggered pathophysiological changes as rescuers (Bacteroides acidifaciens and Parabacteroides goldsteinii) or potential exacerbators (A. muciniphila). Microbiome-modulating interventions may thus be promising mitigation strategies for immunotherapies with high risk of immune-mediated adverse events.</p>\",\"PeriodicalId\":94037,\"journal\":{\"name\":\"ImmunoHorizons\",\"volume\":\"7 12\",\"pages\":\"872-885\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoHorizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4049/immunohorizons.2300103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2300103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Gut Microbiota Is Associated with Onset and Severity of Type 1 Diabetes in Nonobese Diabetic Mice Treated with Anti-PD-1.
Our bodies are home to individual-specific microbial ecosystems that have recently been found to be modified by cancer immunotherapies. The interaction between the gut microbiome and islet autoimmunity leading to type I diabetes (T1D) is well described and highlights the microbiome contribution during the onset and T1D development in animals and humans. As cancer immunotherapies induce gut microbiome perturbations and immune-mediated adverse events in susceptible patients, we hypothesized that NOD mice can be used as a predictive tool to investigate the effects of anti-PD-1 treatment on the onset and severity of T1D, and how microbiota influences immunopathology. In this longitudinal study, we showed that anti-PD-1 accelerated T1D onset, increased glutamic acid decarboxylase-reactive T cell frequency in spleen, and precipitated destruction of β cells, triggering high glucose levels and pancreatic islet reduction. Anti-PD-1 treatment also resulted in temporal microbiota changes and lower diversity characteristic of T1D. Finally, we identified known insulin-resistance regulating bacteria that were negatively correlated with glucose levels, indicating that anti-PD-1 treatment impacts the early gut microbiota composition. Moreover, an increase of mucin-degrading Akkermansia muciniphila points to alterations of barrier function and immune system activation. These results highlight the ability of microbiota to readily respond to therapy-triggered pathophysiological changes as rescuers (Bacteroides acidifaciens and Parabacteroides goldsteinii) or potential exacerbators (A. muciniphila). Microbiome-modulating interventions may thus be promising mitigation strategies for immunotherapies with high risk of immune-mediated adverse events.