Sarah Mae Voskamp, Maya Alexis Hammonds, Thomas M. Knapp, Ashley L. Pekmezian, Dexter Hadley, Jennifer S. Nelson
{"title":"元分析显示法洛氏四联症与对照组的基因表达存在差异。","authors":"Sarah Mae Voskamp, Maya Alexis Hammonds, Thomas M. Knapp, Ashley L. Pekmezian, Dexter Hadley, Jennifer S. Nelson","doi":"10.1002/bdr2.2293","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart defect in the United States. We aimed to identify genetic variations associated with TOF using meta-analysis of publicly available digital samples to spotlight targets for prevention, screening, and treatment strategies.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We used the Search Tag Analyze Resource for Gene Expression Omnibus (STARGEO) platform to identify 39 TOF and 19 non-TOF right ventricle tissue samples from microarray data and identified upregulated and downregulated genes. Associated gene expression data were analyzed using ingenuity pathway analysis and restricted to genes with a statistically significant (<i>p</i> < .05) difference and an absolute experimental log ratio >0.1 between disease and control samples.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our analysis identified 220 genes whose expression profiles were significantly altered in TOF vs. non-TOF samples. The most striking differences identified in gene expression included genes FBXO32, PTGES, MYL12a, and NR2F2. Some top associated canonical pathways included adrenergic signaling, estrogen receptor signaling, and the role of NFAT in cardiac hypertrophy. In general, genes involved in adaptive, defensive, and reparative cardiovascular responses showed altered expression in TOF vs. non-TOF samples.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We introduced the interpretation of open “big data” using the STARGEO platform to define robust genomic signatures of congenital heart disease pathology of TOF. Overall, our meta-analysis results indicated increased metabolism, inflammation, and altered gene expression in TOF patients. Estrogen receptor signaling and the role of NFAT in cardiac hypertrophy represent unique pathways upregulated in TOF patients and are potential targets for future pharmacologic treatments.</p>\n </section>\n </div>","PeriodicalId":9121,"journal":{"name":"Birth Defects Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-analysis reveals differential gene expression in tetralogy of Fallot versus controls\",\"authors\":\"Sarah Mae Voskamp, Maya Alexis Hammonds, Thomas M. Knapp, Ashley L. Pekmezian, Dexter Hadley, Jennifer S. Nelson\",\"doi\":\"10.1002/bdr2.2293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objectives</h3>\\n \\n <p>Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart defect in the United States. We aimed to identify genetic variations associated with TOF using meta-analysis of publicly available digital samples to spotlight targets for prevention, screening, and treatment strategies.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We used the Search Tag Analyze Resource for Gene Expression Omnibus (STARGEO) platform to identify 39 TOF and 19 non-TOF right ventricle tissue samples from microarray data and identified upregulated and downregulated genes. Associated gene expression data were analyzed using ingenuity pathway analysis and restricted to genes with a statistically significant (<i>p</i> < .05) difference and an absolute experimental log ratio >0.1 between disease and control samples.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Our analysis identified 220 genes whose expression profiles were significantly altered in TOF vs. non-TOF samples. The most striking differences identified in gene expression included genes FBXO32, PTGES, MYL12a, and NR2F2. Some top associated canonical pathways included adrenergic signaling, estrogen receptor signaling, and the role of NFAT in cardiac hypertrophy. In general, genes involved in adaptive, defensive, and reparative cardiovascular responses showed altered expression in TOF vs. non-TOF samples.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>We introduced the interpretation of open “big data” using the STARGEO platform to define robust genomic signatures of congenital heart disease pathology of TOF. Overall, our meta-analysis results indicated increased metabolism, inflammation, and altered gene expression in TOF patients. Estrogen receptor signaling and the role of NFAT in cardiac hypertrophy represent unique pathways upregulated in TOF patients and are potential targets for future pharmacologic treatments.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9121,\"journal\":{\"name\":\"Birth Defects Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Birth Defects Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdr2.2293\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth Defects Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdr2.2293","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Meta-analysis reveals differential gene expression in tetralogy of Fallot versus controls
Objectives
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart defect in the United States. We aimed to identify genetic variations associated with TOF using meta-analysis of publicly available digital samples to spotlight targets for prevention, screening, and treatment strategies.
Methods
We used the Search Tag Analyze Resource for Gene Expression Omnibus (STARGEO) platform to identify 39 TOF and 19 non-TOF right ventricle tissue samples from microarray data and identified upregulated and downregulated genes. Associated gene expression data were analyzed using ingenuity pathway analysis and restricted to genes with a statistically significant (p < .05) difference and an absolute experimental log ratio >0.1 between disease and control samples.
Results
Our analysis identified 220 genes whose expression profiles were significantly altered in TOF vs. non-TOF samples. The most striking differences identified in gene expression included genes FBXO32, PTGES, MYL12a, and NR2F2. Some top associated canonical pathways included adrenergic signaling, estrogen receptor signaling, and the role of NFAT in cardiac hypertrophy. In general, genes involved in adaptive, defensive, and reparative cardiovascular responses showed altered expression in TOF vs. non-TOF samples.
Conclusions
We introduced the interpretation of open “big data” using the STARGEO platform to define robust genomic signatures of congenital heart disease pathology of TOF. Overall, our meta-analysis results indicated increased metabolism, inflammation, and altered gene expression in TOF patients. Estrogen receptor signaling and the role of NFAT in cardiac hypertrophy represent unique pathways upregulated in TOF patients and are potential targets for future pharmacologic treatments.
期刊介绍:
The journal Birth Defects Research publishes original research and reviews in areas related to the etiology of adverse developmental and reproductive outcome. In particular the journal is devoted to the publication of original scientific research that contributes to the understanding of the biology of embryonic development and the prenatal causative factors and mechanisms leading to adverse pregnancy outcomes, namely structural and functional birth defects, pregnancy loss, postnatal functional defects in the human population, and to the identification of prenatal factors and biological mechanisms that reduce these risks.
Adverse reproductive and developmental outcomes may have genetic, environmental, nutritional or epigenetic causes. Accordingly, the journal Birth Defects Research takes an integrated, multidisciplinary approach in its organization and publication strategy. The journal Birth Defects Research contains separate sections for clinical and molecular teratology, developmental and reproductive toxicology, and reviews in developmental biology to acknowledge and accommodate the integrative nature of research in this field. Each section has a dedicated editor who is a leader in his/her field and who has full editorial authority in his/her area.