昼夜温度波动抑制南极真菌的生长

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kevin K. Newsham
{"title":"昼夜温度波动抑制南极真菌的生长","authors":"Kevin K. Newsham","doi":"10.1016/j.funbio.2023.12.003","DOIUrl":null,"url":null,"abstract":"<p>The surface temperatures of Antarctic soils and bryophyte colonies can fluctuate from close to freezing point to approximately 20 °C under clear skies around solar noon during midsummer. However, whether diurnally fluctuating temperatures influence the growth and metabolic activities of fungi inhabiting these substrates remains unknown. Here, 10 isolates of <em>Pseudogymnoascus roseus</em>, an ascomycete that is widespread in Antarctica, were exposed <em>in vitro</em> to temperatures fluctuating daily from 2 °C to 15–24 °C. Relative to controls incubated at the constant mean temperature of each treatment, temperatures fluctuating from 2 °C to ≥18 °C inhibited the growth of all isolates by 10–51 % at 24 h and 48 h, and by up to 79 % for individual isolates. Over a period of 21 days, all fluctuating temperature treatments reduced mean growth rates by between 3 % and 48 %, but had few effects on specific β-glucosidase activity, a proxy measure for metabolic activity. It is concluded that temperatures fluctuating diurnally to ≥18 °C during summer in mesic Antarctic soils and bryophyte colonies, exacerbated by the occurrence of climate-change associated heatwaves, are likely to inhibit the growth of <em>P. roseus</em> and perhaps also other ecologically important fungi.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diurnal temperature fluctuation inhibits the growth of an Antarctic fungus\",\"authors\":\"Kevin K. Newsham\",\"doi\":\"10.1016/j.funbio.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The surface temperatures of Antarctic soils and bryophyte colonies can fluctuate from close to freezing point to approximately 20 °C under clear skies around solar noon during midsummer. However, whether diurnally fluctuating temperatures influence the growth and metabolic activities of fungi inhabiting these substrates remains unknown. Here, 10 isolates of <em>Pseudogymnoascus roseus</em>, an ascomycete that is widespread in Antarctica, were exposed <em>in vitro</em> to temperatures fluctuating daily from 2 °C to 15–24 °C. Relative to controls incubated at the constant mean temperature of each treatment, temperatures fluctuating from 2 °C to ≥18 °C inhibited the growth of all isolates by 10–51 % at 24 h and 48 h, and by up to 79 % for individual isolates. Over a period of 21 days, all fluctuating temperature treatments reduced mean growth rates by between 3 % and 48 %, but had few effects on specific β-glucosidase activity, a proxy measure for metabolic activity. It is concluded that temperatures fluctuating diurnally to ≥18 °C during summer in mesic Antarctic soils and bryophyte colonies, exacerbated by the occurrence of climate-change associated heatwaves, are likely to inhibit the growth of <em>P. roseus</em> and perhaps also other ecologically important fungi.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.funbio.2023.12.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.funbio.2023.12.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在盛夏晴空万里的正午前后,南极土壤和苔藓植物群落的表面温度会从接近冰点波动到约 20 °C。然而,昼夜波动的温度是否会影响栖息在这些基质中的真菌的生长和新陈代谢活动仍是未知数。在此,研究人员将广泛分布于南极洲的假蔷薇真菌(Pseudogymnoascus roseus)的 10 个分离株体外暴露于每天从 2 ℃ 到 15-24 ℃ 波动的温度中。相对于在每种处理的恒定平均温度下培养的对照组,温度从 2 °C 波动到 ≥18 °C,在 24 小时和 48 小时内对所有分离菌株的生长抑制率为 10-51%,对单个分离菌株的抑制率高达 79%。在 21 天的时间里,所有温度波动处理都使平均生长率降低了 3 % 到 48 %,但对特定的 β-葡萄糖苷酶活性(代谢活性的替代指标)几乎没有影响。结论是,南极中生土壤和红叶植物群落夏季的昼夜温度波动≥18 °C,气候变化引起的热浪加剧了这种波动,可能会抑制蔷薇真菌的生长,或许也会抑制其他重要生态真菌的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diurnal temperature fluctuation inhibits the growth of an Antarctic fungus

The surface temperatures of Antarctic soils and bryophyte colonies can fluctuate from close to freezing point to approximately 20 °C under clear skies around solar noon during midsummer. However, whether diurnally fluctuating temperatures influence the growth and metabolic activities of fungi inhabiting these substrates remains unknown. Here, 10 isolates of Pseudogymnoascus roseus, an ascomycete that is widespread in Antarctica, were exposed in vitro to temperatures fluctuating daily from 2 °C to 15–24 °C. Relative to controls incubated at the constant mean temperature of each treatment, temperatures fluctuating from 2 °C to ≥18 °C inhibited the growth of all isolates by 10–51 % at 24 h and 48 h, and by up to 79 % for individual isolates. Over a period of 21 days, all fluctuating temperature treatments reduced mean growth rates by between 3 % and 48 %, but had few effects on specific β-glucosidase activity, a proxy measure for metabolic activity. It is concluded that temperatures fluctuating diurnally to ≥18 °C during summer in mesic Antarctic soils and bryophyte colonies, exacerbated by the occurrence of climate-change associated heatwaves, are likely to inhibit the growth of P. roseus and perhaps also other ecologically important fungi.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信