异质界面工程实现了用于人工突触的同质金属卤化物过氧化物纳米线

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mei Huang , Shizhen Zhang , Peizhi Zhou , Zhishan Chen , Huiwang Lian , Bo Wang , Qiguang Li , Sareh Sadat Moshirian_Farahi , Saravanakumar Subramanian , Qingguang Zeng , Yang Li
{"title":"异质界面工程实现了用于人工突触的同质金属卤化物过氧化物纳米线","authors":"Mei Huang ,&nbsp;Shizhen Zhang ,&nbsp;Peizhi Zhou ,&nbsp;Zhishan Chen ,&nbsp;Huiwang Lian ,&nbsp;Bo Wang ,&nbsp;Qiguang Li ,&nbsp;Sareh Sadat Moshirian_Farahi ,&nbsp;Saravanakumar Subramanian ,&nbsp;Qingguang Zeng ,&nbsp;Yang Li","doi":"10.1016/j.mtnano.2023.100449","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Metal halide </span>perovskites<span> (MHPs)-constructed devices for artificial synapses have attractive and robust prospects in neuromorphic computing<span>. However, the challenge is that their power-consumption does not compete with the biological synapses with a magnitude of fJ per spike. This is since hierarchical 0D/1D nanostructures generated from the phase separation in the liquid-phase reaction of MHPs intrinsically increase the power consumption, while homogeneous 1D MHPs may effectively break such bottleneck. Here, we propose the heterogeneous interface engineering to prepare homogeneous 1D MHPs CsPbI</span></span></span><sub>3</sub><span> nanowires (NWs) with a very high morphological yield (almost 100 %) and diameter of 17.2 nm. We demonstrate the homogeneous NWs-mediated devices exhibit a low operating voltage (−0.7 V), over one order of magnitude lower than conventional flash memories. Our device also triggers the classic potentiation and depression processes exhibiting excellent electronic synaptic plasticity. This work could be conducive to synthesizing homogeneous 1D MHPs nanostructure in artificial synapses and inspire more research on various nanostructures for neuromorphic system application.</span></p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100449"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous interface engineering enabling homogeneous metal halide perovskite nanowires for artificial synapses\",\"authors\":\"Mei Huang ,&nbsp;Shizhen Zhang ,&nbsp;Peizhi Zhou ,&nbsp;Zhishan Chen ,&nbsp;Huiwang Lian ,&nbsp;Bo Wang ,&nbsp;Qiguang Li ,&nbsp;Sareh Sadat Moshirian_Farahi ,&nbsp;Saravanakumar Subramanian ,&nbsp;Qingguang Zeng ,&nbsp;Yang Li\",\"doi\":\"10.1016/j.mtnano.2023.100449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Metal halide </span>perovskites<span> (MHPs)-constructed devices for artificial synapses have attractive and robust prospects in neuromorphic computing<span>. However, the challenge is that their power-consumption does not compete with the biological synapses with a magnitude of fJ per spike. This is since hierarchical 0D/1D nanostructures generated from the phase separation in the liquid-phase reaction of MHPs intrinsically increase the power consumption, while homogeneous 1D MHPs may effectively break such bottleneck. Here, we propose the heterogeneous interface engineering to prepare homogeneous 1D MHPs CsPbI</span></span></span><sub>3</sub><span> nanowires (NWs) with a very high morphological yield (almost 100 %) and diameter of 17.2 nm. We demonstrate the homogeneous NWs-mediated devices exhibit a low operating voltage (−0.7 V), over one order of magnitude lower than conventional flash memories. Our device also triggers the classic potentiation and depression processes exhibiting excellent electronic synaptic plasticity. This work could be conducive to synthesizing homogeneous 1D MHPs nanostructure in artificial synapses and inspire more research on various nanostructures for neuromorphic system application.</span></p></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"25 \",\"pages\":\"Article 100449\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842023001487\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842023001487","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由金属卤化物过氧化物(MHPs)构建的人工突触设备在神经形态计算领域具有诱人而稳健的前景。然而,其面临的挑战是其功耗无法与生物突触(每个尖峰的功率为 fJ)相媲美。这是因为在 MHPs 的液相反应中,由相分离产生的分层 0D/1D 纳米结构本质上会增加功耗,而同质 1D MHPs 则可以有效地突破这一瓶颈。在此,我们提出利用异质界面工程来制备同质一维 MHPs CsPbI3 纳米线(NWs),其形态良率非常高(接近 100%),直径为 17.2 nm。我们证明,以均质纳米线为媒介的器件具有较低的工作电压(-0.7 V),比传统闪存低一个数量级以上。我们的设备还能触发经典的电位增强和抑制过程,表现出卓越的电子突触可塑性。这项工作有助于在人工突触中合成均质的一维 MHPs 纳米结构,并启发人们对神经形态系统应用的各种纳米结构进行更多研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heterogeneous interface engineering enabling homogeneous metal halide perovskite nanowires for artificial synapses

Heterogeneous interface engineering enabling homogeneous metal halide perovskite nanowires for artificial synapses

Heterogeneous interface engineering enabling homogeneous metal halide perovskite nanowires for artificial synapses

Metal halide perovskites (MHPs)-constructed devices for artificial synapses have attractive and robust prospects in neuromorphic computing. However, the challenge is that their power-consumption does not compete with the biological synapses with a magnitude of fJ per spike. This is since hierarchical 0D/1D nanostructures generated from the phase separation in the liquid-phase reaction of MHPs intrinsically increase the power consumption, while homogeneous 1D MHPs may effectively break such bottleneck. Here, we propose the heterogeneous interface engineering to prepare homogeneous 1D MHPs CsPbI3 nanowires (NWs) with a very high morphological yield (almost 100 %) and diameter of 17.2 nm. We demonstrate the homogeneous NWs-mediated devices exhibit a low operating voltage (−0.7 V), over one order of magnitude lower than conventional flash memories. Our device also triggers the classic potentiation and depression processes exhibiting excellent electronic synaptic plasticity. This work could be conducive to synthesizing homogeneous 1D MHPs nanostructure in artificial synapses and inspire more research on various nanostructures for neuromorphic system application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信