沙伊用于资产管理的大型语言模型

Zhongyang Guo, Guanran Jiang, Zhongdan Zhang, Peng Li, Zhefeng Wang, Yinchun Wang
{"title":"沙伊用于资产管理的大型语言模型","authors":"Zhongyang Guo, Guanran Jiang, Zhongdan Zhang, Peng Li, Zhefeng Wang, Yinchun Wang","doi":"arxiv-2312.14203","DOIUrl":null,"url":null,"abstract":"This paper introduces \"Shai\" a 10B level large language model specifically\ndesigned for the asset management industry, built upon an open-source\nfoundational model. With continuous pre-training and fine-tuning using a\ntargeted corpus, Shai demonstrates enhanced performance in tasks relevant to\nits domain, outperforming baseline models. Our research includes the\ndevelopment of an innovative evaluation framework, which integrates\nprofessional qualification exams, tailored tasks, open-ended question\nanswering, and safety assessments, to comprehensively assess Shai's\ncapabilities. Furthermore, we discuss the challenges and implications of\nutilizing large language models like GPT-4 for performance assessment in asset\nmanagement, suggesting a combination of automated evaluation and human\njudgment. Shai's development, showcasing the potential and versatility of\n10B-level large language models in the financial sector with significant\nperformance and modest computational requirements, hopes to provide practical\ninsights and methodologies to assist industry peers in their similar endeavors.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"142 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shai: A large language model for asset management\",\"authors\":\"Zhongyang Guo, Guanran Jiang, Zhongdan Zhang, Peng Li, Zhefeng Wang, Yinchun Wang\",\"doi\":\"arxiv-2312.14203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces \\\"Shai\\\" a 10B level large language model specifically\\ndesigned for the asset management industry, built upon an open-source\\nfoundational model. With continuous pre-training and fine-tuning using a\\ntargeted corpus, Shai demonstrates enhanced performance in tasks relevant to\\nits domain, outperforming baseline models. Our research includes the\\ndevelopment of an innovative evaluation framework, which integrates\\nprofessional qualification exams, tailored tasks, open-ended question\\nanswering, and safety assessments, to comprehensively assess Shai's\\ncapabilities. Furthermore, we discuss the challenges and implications of\\nutilizing large language models like GPT-4 for performance assessment in asset\\nmanagement, suggesting a combination of automated evaluation and human\\njudgment. Shai's development, showcasing the potential and versatility of\\n10B-level large language models in the financial sector with significant\\nperformance and modest computational requirements, hopes to provide practical\\ninsights and methodologies to assist industry peers in their similar endeavors.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.14203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.14203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一个专为资产管理行业设计的 10B 级大型语言模型 "Shai",它建立在一个开源基础模型之上。通过使用目标语料库进行持续的预训练和微调,"Shai "在与其领域相关的任务中表现出更强的性能,超过了基线模型。我们的研究包括开发一个创新的评估框架,该框架整合了专业资格考试、定制任务、开放式问题解答和安全评估,以全面评估 Shai 的能力。此外,我们还讨论了在资产管理中利用 GPT-4 等大型语言模型进行性能评估所面临的挑战和意义,并建议将自动评估与人工判断相结合。Shai的开发展示了10B级大型语言模型在金融领域的潜力和多功能性,具有显著的性能和适中的计算要求,希望能为业界同行提供实用的见解和方法,帮助他们开展类似的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shai: A large language model for asset management
This paper introduces "Shai" a 10B level large language model specifically designed for the asset management industry, built upon an open-source foundational model. With continuous pre-training and fine-tuning using a targeted corpus, Shai demonstrates enhanced performance in tasks relevant to its domain, outperforming baseline models. Our research includes the development of an innovative evaluation framework, which integrates professional qualification exams, tailored tasks, open-ended question answering, and safety assessments, to comprehensively assess Shai's capabilities. Furthermore, we discuss the challenges and implications of utilizing large language models like GPT-4 for performance assessment in asset management, suggesting a combination of automated evaluation and human judgment. Shai's development, showcasing the potential and versatility of 10B-level large language models in the financial sector with significant performance and modest computational requirements, hopes to provide practical insights and methodologies to assist industry peers in their similar endeavors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信