{"title":"连续时间有限视野下时间不一致停止问题的近强均衡","authors":"Zhou Zhou","doi":"10.1111/mafi.12428","DOIUrl":null,"url":null,"abstract":"<p>We consider time-inconsistent stopping problems for a continuous-time Markov chain under finite time horizon with non-exponential discounting. We provide an example indicating that strong equilibria may not exist in general. As a result, we propose a notion of equilibrium called almost strong equilibrium (ASE), which is a weak equilibrium and satisfies the condition of strong equilibria except at the boundary points of the associated stopping region. We provide an iteration procedure and show that this procedure leads to an ASE. Moreover, we prove that this ASE is the unique ASE among all regular stopping policies under finite horizon <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$T&lt;\\infty$</annotation>\n </semantics></math>. In contrast, we show that strong equilibria (and thus ASE) exist and may not be unique for the infinite horizon case <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>=</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$T=\\infty$</annotation>\n </semantics></math>. Furthermore, we show that the limit of the finite-horizon ASE as <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$T\\rightarrow \\infty$</annotation>\n </semantics></math> is a weak equilibrium for the infinite-horizon problem, and may not be a strong equilibrium or ASE.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"34 4","pages":"1089-1122"},"PeriodicalIF":1.6000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12428","citationCount":"0","resultStr":"{\"title\":\"Almost strong equilibria for time-inconsistent stopping problems under finite horizon in continuous time\",\"authors\":\"Zhou Zhou\",\"doi\":\"10.1111/mafi.12428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider time-inconsistent stopping problems for a continuous-time Markov chain under finite time horizon with non-exponential discounting. We provide an example indicating that strong equilibria may not exist in general. As a result, we propose a notion of equilibrium called almost strong equilibrium (ASE), which is a weak equilibrium and satisfies the condition of strong equilibria except at the boundary points of the associated stopping region. We provide an iteration procedure and show that this procedure leads to an ASE. Moreover, we prove that this ASE is the unique ASE among all regular stopping policies under finite horizon <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mo><</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$T&lt;\\\\infty$</annotation>\\n </semantics></math>. In contrast, we show that strong equilibria (and thus ASE) exist and may not be unique for the infinite horizon case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mo>=</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$T=\\\\infty$</annotation>\\n </semantics></math>. Furthermore, we show that the limit of the finite-horizon ASE as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$T\\\\rightarrow \\\\infty$</annotation>\\n </semantics></math> is a weak equilibrium for the infinite-horizon problem, and may not be a strong equilibrium or ASE.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"34 4\",\"pages\":\"1089-1122\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12428\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12428\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12428","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑了连续时间马尔可夫链在有限时间跨度和非指数贴现条件下的时间不一致停止问题。我们提供了一个例子,说明强均衡在一般情况下可能并不存在。因此,我们提出了一种均衡概念,称为近强均衡(ASE),它是一种弱均衡,满足强均衡的条件,但在相关停止区域的边界点除外。我们提供了一个迭代过程,并证明该过程会导致一个 ASE。此外,我们还证明了该 ASE 是有限视界 T<∞$T<\infty$ 下所有规则停止策略中唯一的 ASE。与此相反,我们证明了强均衡(以及 ASE)的存在,而且在无限视界 T=∞$T=\infty$ 的情况下,强均衡可能不是唯一的。此外,我们还证明了有限视距 ASE 的极限 T→∞$T\rightarrow \infty$ 是无限视距问题的弱均衡,可能不是强均衡或 ASE。
Almost strong equilibria for time-inconsistent stopping problems under finite horizon in continuous time
We consider time-inconsistent stopping problems for a continuous-time Markov chain under finite time horizon with non-exponential discounting. We provide an example indicating that strong equilibria may not exist in general. As a result, we propose a notion of equilibrium called almost strong equilibrium (ASE), which is a weak equilibrium and satisfies the condition of strong equilibria except at the boundary points of the associated stopping region. We provide an iteration procedure and show that this procedure leads to an ASE. Moreover, we prove that this ASE is the unique ASE among all regular stopping policies under finite horizon . In contrast, we show that strong equilibria (and thus ASE) exist and may not be unique for the infinite horizon case . Furthermore, we show that the limit of the finite-horizon ASE as is a weak equilibrium for the infinite-horizon problem, and may not be a strong equilibrium or ASE.
期刊介绍:
Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems.
The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.