分析宽带接收器中作为连续时间放大器替代品的离散时间积分放大器

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yudhajit Ray;Shreyas Sen
{"title":"分析宽带接收器中作为连续时间放大器替代品的离散时间积分放大器","authors":"Yudhajit Ray;Shreyas Sen","doi":"10.1109/OJCAS.2023.3338210","DOIUrl":null,"url":null,"abstract":"Recent advancements in low power and low noise front-end amplifiers have made it possible to support high-speed data transmission within the deep roll-off regions of conventional wireline channels. Despite being primarily limited by inter-symbol-interference (ISI), these legacy channels also require power-consuming front-end amplifiers due to increased insertion-loss at high frequencies. Wireline-like broadband channels, such as proximity communication and human-body-communication (HBC), as well as multi-lane, densely-packed channels, are further constrained by their high loss and unique channel responses which cause the received signal to be noise-limited. To address these challenges, this paper proposes the use of a discrete-time integrating amplifier as a low power <1 pJ/b using 65nm CMOS up to 5-6 Gb/s) alternative to traditional continuous-time front-end amplifiers. Integrating amplifiers also reduce the effects of noise due to its inherent current integrating process. The paper provides a detailed mathematical analysis of gain of two conventional and three novel and improved integrating amplifiers, accurate input referred noise estimations, signal-to-noise ratio, and a comparison of the integrating amplifier’s performance with that of a low-noise amplifier. The analysis identifies the most optimum integrator architecture and provides comparison with simulated results. This paper also develops theoretical expressions and provides in-depth understanding of input referred noise, while supporting them by simulations using 65nm CMOS technology node. Finally, a comparative analysis between low-noise amplifier and discrete-time integrating amplifier is presented to demonstrate power and noise benefits for both legacy and wireline-like channels, while providing an easier design space as integrator provides two-dimensional controllability for gain.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10337627","citationCount":"0","resultStr":"{\"title\":\"Analysis of Discrete-Time Integrating Amplifiers as an Alternative to Continuous-Time Amplifiers in Broadband Receivers\",\"authors\":\"Yudhajit Ray;Shreyas Sen\",\"doi\":\"10.1109/OJCAS.2023.3338210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in low power and low noise front-end amplifiers have made it possible to support high-speed data transmission within the deep roll-off regions of conventional wireline channels. Despite being primarily limited by inter-symbol-interference (ISI), these legacy channels also require power-consuming front-end amplifiers due to increased insertion-loss at high frequencies. Wireline-like broadband channels, such as proximity communication and human-body-communication (HBC), as well as multi-lane, densely-packed channels, are further constrained by their high loss and unique channel responses which cause the received signal to be noise-limited. To address these challenges, this paper proposes the use of a discrete-time integrating amplifier as a low power <1 pJ/b using 65nm CMOS up to 5-6 Gb/s) alternative to traditional continuous-time front-end amplifiers. Integrating amplifiers also reduce the effects of noise due to its inherent current integrating process. The paper provides a detailed mathematical analysis of gain of two conventional and three novel and improved integrating amplifiers, accurate input referred noise estimations, signal-to-noise ratio, and a comparison of the integrating amplifier’s performance with that of a low-noise amplifier. The analysis identifies the most optimum integrator architecture and provides comparison with simulated results. This paper also develops theoretical expressions and provides in-depth understanding of input referred noise, while supporting them by simulations using 65nm CMOS technology node. Finally, a comparative analysis between low-noise amplifier and discrete-time integrating amplifier is presented to demonstrate power and noise benefits for both legacy and wireline-like channels, while providing an easier design space as integrator provides two-dimensional controllability for gain.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10337627\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10337627/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10337627/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

低功耗和低噪声前端放大器的最新进展使得在传统有线信道的深度衰减区域内支持高速数据传输成为可能。尽管主要受到符号间干扰(ISI)的限制,但由于高频插入损耗增加,这些传统信道还需要耗电的前端放大器。近距离通信和人体通信(HBC)等有线宽带信道以及多线、密集信道则因其高损耗和独特的信道响应而受到进一步限制,导致接收信号受噪声限制。为应对这些挑战,本文提出使用离散时间积分放大器作为传统连续时间前端放大器的低功耗(使用 65nm CMOS,最高 5-6 Gb/s,<1 pJ/b)替代品。由于其固有的电流积分工艺,积分放大器还能减少噪声的影响。论文对两个传统积分放大器和三个新型改进积分放大器的增益、精确的输入参考噪声估计、信噪比进行了详细的数学分析,并对积分放大器的性能与低噪声放大器的性能进行了比较。分析确定了最理想的积分器结构,并与模拟结果进行了比较。本文还建立了理论表达式,并深入理解了输入参考噪声,同时使用 65nm CMOS 技术节点进行了仿真。最后,本文还对低噪声放大器和分立时间积分放大器进行了比较分析,以展示传统和类似有线信道的功率和噪声优势,同时由于积分器提供了增益的二维可控性,因此提供了更简单的设计空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Discrete-Time Integrating Amplifiers as an Alternative to Continuous-Time Amplifiers in Broadband Receivers
Recent advancements in low power and low noise front-end amplifiers have made it possible to support high-speed data transmission within the deep roll-off regions of conventional wireline channels. Despite being primarily limited by inter-symbol-interference (ISI), these legacy channels also require power-consuming front-end amplifiers due to increased insertion-loss at high frequencies. Wireline-like broadband channels, such as proximity communication and human-body-communication (HBC), as well as multi-lane, densely-packed channels, are further constrained by their high loss and unique channel responses which cause the received signal to be noise-limited. To address these challenges, this paper proposes the use of a discrete-time integrating amplifier as a low power <1 pJ/b using 65nm CMOS up to 5-6 Gb/s) alternative to traditional continuous-time front-end amplifiers. Integrating amplifiers also reduce the effects of noise due to its inherent current integrating process. The paper provides a detailed mathematical analysis of gain of two conventional and three novel and improved integrating amplifiers, accurate input referred noise estimations, signal-to-noise ratio, and a comparison of the integrating amplifier’s performance with that of a low-noise amplifier. The analysis identifies the most optimum integrator architecture and provides comparison with simulated results. This paper also develops theoretical expressions and provides in-depth understanding of input referred noise, while supporting them by simulations using 65nm CMOS technology node. Finally, a comparative analysis between low-noise amplifier and discrete-time integrating amplifier is presented to demonstrate power and noise benefits for both legacy and wireline-like channels, while providing an easier design space as integrator provides two-dimensional controllability for gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信