Daniel Addo , Shijie Zhou , Kwabena Sarpong , Obed T. Nartey , Muhammed A. Abdullah , Chiagoziem C. Ukwuoma , Mugahed A. Al-antari
{"title":"利用组织病理学图像的混合轻量级乳腺癌分类框架","authors":"Daniel Addo , Shijie Zhou , Kwabena Sarpong , Obed T. Nartey , Muhammed A. Abdullah , Chiagoziem C. Ukwuoma , Mugahed A. Al-antari","doi":"10.1016/j.bbe.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>A crucial element in the diagnosis of breast cancer is the utilization of a classification method that is efficient, lightweight, and precise. Convolutional neural networks (CNNs) have garnered attention as a viable approach for classifying histopathological images. However, deeper and wider models tend to rely on first-order statistics, demanding substantial computational resources and struggling with fixed kernel dimensions that limit encompassing diverse resolution data, thereby degrading the model’s performance during testing. This study introduces BCHI-CovNet, a novel lightweight artificial intelligence (AI) model for histopathological breast image classification. Firstly, a novel multiscale depth-wise separable convolution is proposed. It is introduced to split input tensors into distinct tensor fragments, each subject to unique kernel sizes integrating various kernel sizes within one depth-wise convolution to capture both low- and high-resolution patterns. Secondly, an additional pooling module is introduced to capture extensive second-order statistical information across the channels and spatial dimensions. This module works in tandem with an innovative multi-head self-attention mechanism to capture the long-range pixels contributing significantly to the learning process, yielding distinctive and discriminative features that further enrich representation and introduce pixel diversity during training. These novel designs substantially reduce computational complexities regarding model parameters and FLOPs, which is crucial for resource-constrained medical devices. The outcomes achieved by employing the suggested model on two openly accessible datasets for breast cancer histopathological images reveal noteworthy performance. Specifically, the proposed approach attains high levels of accuracy: 99.15 % at 40× magnification, 99.08 % at 100× magnification, 99.22 % at 200× magnification, and 98.87 % at 400× magnification on the BreaKHis dataset. Additionally, it achieves an accuracy of 99.38 % on the BACH dataset. These results highlight the exceptional effectiveness and practical promise of BCHI-CovNet for the classification of breast cancer histopathological images.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 1","pages":"Pages 31-54"},"PeriodicalIF":5.3000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid lightweight breast cancer classification framework using the histopathological images\",\"authors\":\"Daniel Addo , Shijie Zhou , Kwabena Sarpong , Obed T. Nartey , Muhammed A. Abdullah , Chiagoziem C. Ukwuoma , Mugahed A. Al-antari\",\"doi\":\"10.1016/j.bbe.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A crucial element in the diagnosis of breast cancer is the utilization of a classification method that is efficient, lightweight, and precise. Convolutional neural networks (CNNs) have garnered attention as a viable approach for classifying histopathological images. However, deeper and wider models tend to rely on first-order statistics, demanding substantial computational resources and struggling with fixed kernel dimensions that limit encompassing diverse resolution data, thereby degrading the model’s performance during testing. This study introduces BCHI-CovNet, a novel lightweight artificial intelligence (AI) model for histopathological breast image classification. Firstly, a novel multiscale depth-wise separable convolution is proposed. It is introduced to split input tensors into distinct tensor fragments, each subject to unique kernel sizes integrating various kernel sizes within one depth-wise convolution to capture both low- and high-resolution patterns. Secondly, an additional pooling module is introduced to capture extensive second-order statistical information across the channels and spatial dimensions. This module works in tandem with an innovative multi-head self-attention mechanism to capture the long-range pixels contributing significantly to the learning process, yielding distinctive and discriminative features that further enrich representation and introduce pixel diversity during training. These novel designs substantially reduce computational complexities regarding model parameters and FLOPs, which is crucial for resource-constrained medical devices. The outcomes achieved by employing the suggested model on two openly accessible datasets for breast cancer histopathological images reveal noteworthy performance. Specifically, the proposed approach attains high levels of accuracy: 99.15 % at 40× magnification, 99.08 % at 100× magnification, 99.22 % at 200× magnification, and 98.87 % at 400× magnification on the BreaKHis dataset. Additionally, it achieves an accuracy of 99.38 % on the BACH dataset. These results highlight the exceptional effectiveness and practical promise of BCHI-CovNet for the classification of breast cancer histopathological images.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"44 1\",\"pages\":\"Pages 31-54\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S020852162300075X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S020852162300075X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A hybrid lightweight breast cancer classification framework using the histopathological images
A crucial element in the diagnosis of breast cancer is the utilization of a classification method that is efficient, lightweight, and precise. Convolutional neural networks (CNNs) have garnered attention as a viable approach for classifying histopathological images. However, deeper and wider models tend to rely on first-order statistics, demanding substantial computational resources and struggling with fixed kernel dimensions that limit encompassing diverse resolution data, thereby degrading the model’s performance during testing. This study introduces BCHI-CovNet, a novel lightweight artificial intelligence (AI) model for histopathological breast image classification. Firstly, a novel multiscale depth-wise separable convolution is proposed. It is introduced to split input tensors into distinct tensor fragments, each subject to unique kernel sizes integrating various kernel sizes within one depth-wise convolution to capture both low- and high-resolution patterns. Secondly, an additional pooling module is introduced to capture extensive second-order statistical information across the channels and spatial dimensions. This module works in tandem with an innovative multi-head self-attention mechanism to capture the long-range pixels contributing significantly to the learning process, yielding distinctive and discriminative features that further enrich representation and introduce pixel diversity during training. These novel designs substantially reduce computational complexities regarding model parameters and FLOPs, which is crucial for resource-constrained medical devices. The outcomes achieved by employing the suggested model on two openly accessible datasets for breast cancer histopathological images reveal noteworthy performance. Specifically, the proposed approach attains high levels of accuracy: 99.15 % at 40× magnification, 99.08 % at 100× magnification, 99.22 % at 200× magnification, and 98.87 % at 400× magnification on the BreaKHis dataset. Additionally, it achieves an accuracy of 99.38 % on the BACH dataset. These results highlight the exceptional effectiveness and practical promise of BCHI-CovNet for the classification of breast cancer histopathological images.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.