Vaishali Agrawal, Anjali Priyadarshani, Dharam Pal Pathak, Nidhi Sandal
{"title":"利用自双向乳化给药系统(SDEDDS)提高 Ca-DTPA 的口服生物利用度。","authors":"Vaishali Agrawal, Anjali Priyadarshani, Dharam Pal Pathak, Nidhi Sandal","doi":"10.1080/03639045.2023.2298881","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>BCS class III drug (highly soluble, poorly permeable) possesses low oral bioavailability. The research work highlights the utility of self-double emulsifying drug delivery system (SDEDDS) which are stable isotropic mixture of w/o primary emulsion and hydrophilic surfactants for improving oral bioavailability of Ca-DTPA (Calcium diethylenetriamine pentaacetate). Upon oral administration, SDEDDS rapidly emulsifies into w/o/w double emulsions in the aqueous gastrointestinal environment, with hydrophilic drugs entrapped inside oil reservoirs.</p><p><strong>Methods: </strong>SDEDDS formulation was successfully developed using excipients, that is, medium chain triglycerides, oleic acid, phospholipids, Span 80, Tween 80 using double emulsification technique.</p><p><strong>Results: </strong>The optimized formulation F4 (Aq. phase: 11.6%w,w; MCT & oleic acid: 70.9%w/w; Span 80:17.5%w/w; Lecithin:16%w/w and Tween 80 (10%w/w)) appeared bright yellow liquid which upon dilution appeared milky white within 2 min, droplet size (501.7 nm), pdi value (0.044), zeta potential (-52 mV), entrapment efficiency (79.6 ± 1.63), viscosity (72.2 ± 1.8 mpA.s), significant high cumulative <i>in vitro</i> drug permeation (CDP) and 2.17-fold increase in apparent permeability coefficient. Pharmacokinetic studies in rats showed 1.17-fold increases in AUC of F4 and comparatively higher plasma levels (C<sub>max</sub>) compared with pure drug administered orally. The Absolute (OF4, OD) and Relative bioavailability was found to be 14.52%, 12.35%, and 117.47%, respectively.</p><p><strong>Conclusion: </strong>The present studies have clearly demonstrated that SDEDDS could readily form w/o/w double emulsions <i>in vivo</i> with enhanced <i>in vitro</i> and <i>in vivo</i> oral bioavailability. Therefore, considerable augmentation in the rate and extent of oral drug absorption ratified the better performance of the SDEDDS in enhancing the bioavailability of Ca-DTPA.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing oral bioavailability of Ca-DTPA by self double emulsifying drug delivery system (SDEDDS).\",\"authors\":\"Vaishali Agrawal, Anjali Priyadarshani, Dharam Pal Pathak, Nidhi Sandal\",\"doi\":\"10.1080/03639045.2023.2298881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>BCS class III drug (highly soluble, poorly permeable) possesses low oral bioavailability. The research work highlights the utility of self-double emulsifying drug delivery system (SDEDDS) which are stable isotropic mixture of w/o primary emulsion and hydrophilic surfactants for improving oral bioavailability of Ca-DTPA (Calcium diethylenetriamine pentaacetate). Upon oral administration, SDEDDS rapidly emulsifies into w/o/w double emulsions in the aqueous gastrointestinal environment, with hydrophilic drugs entrapped inside oil reservoirs.</p><p><strong>Methods: </strong>SDEDDS formulation was successfully developed using excipients, that is, medium chain triglycerides, oleic acid, phospholipids, Span 80, Tween 80 using double emulsification technique.</p><p><strong>Results: </strong>The optimized formulation F4 (Aq. phase: 11.6%w,w; MCT & oleic acid: 70.9%w/w; Span 80:17.5%w/w; Lecithin:16%w/w and Tween 80 (10%w/w)) appeared bright yellow liquid which upon dilution appeared milky white within 2 min, droplet size (501.7 nm), pdi value (0.044), zeta potential (-52 mV), entrapment efficiency (79.6 ± 1.63), viscosity (72.2 ± 1.8 mpA.s), significant high cumulative <i>in vitro</i> drug permeation (CDP) and 2.17-fold increase in apparent permeability coefficient. Pharmacokinetic studies in rats showed 1.17-fold increases in AUC of F4 and comparatively higher plasma levels (C<sub>max</sub>) compared with pure drug administered orally. The Absolute (OF4, OD) and Relative bioavailability was found to be 14.52%, 12.35%, and 117.47%, respectively.</p><p><strong>Conclusion: </strong>The present studies have clearly demonstrated that SDEDDS could readily form w/o/w double emulsions <i>in vivo</i> with enhanced <i>in vitro</i> and <i>in vivo</i> oral bioavailability. Therefore, considerable augmentation in the rate and extent of oral drug absorption ratified the better performance of the SDEDDS in enhancing the bioavailability of Ca-DTPA.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03639045.2023.2298881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2023.2298881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Enhancing oral bioavailability of Ca-DTPA by self double emulsifying drug delivery system (SDEDDS).
Objective: BCS class III drug (highly soluble, poorly permeable) possesses low oral bioavailability. The research work highlights the utility of self-double emulsifying drug delivery system (SDEDDS) which are stable isotropic mixture of w/o primary emulsion and hydrophilic surfactants for improving oral bioavailability of Ca-DTPA (Calcium diethylenetriamine pentaacetate). Upon oral administration, SDEDDS rapidly emulsifies into w/o/w double emulsions in the aqueous gastrointestinal environment, with hydrophilic drugs entrapped inside oil reservoirs.
Methods: SDEDDS formulation was successfully developed using excipients, that is, medium chain triglycerides, oleic acid, phospholipids, Span 80, Tween 80 using double emulsification technique.
Results: The optimized formulation F4 (Aq. phase: 11.6%w,w; MCT & oleic acid: 70.9%w/w; Span 80:17.5%w/w; Lecithin:16%w/w and Tween 80 (10%w/w)) appeared bright yellow liquid which upon dilution appeared milky white within 2 min, droplet size (501.7 nm), pdi value (0.044), zeta potential (-52 mV), entrapment efficiency (79.6 ± 1.63), viscosity (72.2 ± 1.8 mpA.s), significant high cumulative in vitro drug permeation (CDP) and 2.17-fold increase in apparent permeability coefficient. Pharmacokinetic studies in rats showed 1.17-fold increases in AUC of F4 and comparatively higher plasma levels (Cmax) compared with pure drug administered orally. The Absolute (OF4, OD) and Relative bioavailability was found to be 14.52%, 12.35%, and 117.47%, respectively.
Conclusion: The present studies have clearly demonstrated that SDEDDS could readily form w/o/w double emulsions in vivo with enhanced in vitro and in vivo oral bioavailability. Therefore, considerable augmentation in the rate and extent of oral drug absorption ratified the better performance of the SDEDDS in enhancing the bioavailability of Ca-DTPA.