Kathleen M. Munley , Andrew P. Hoadley , Beau A. Alward
{"title":"基于系统发生学的远洋鱼类类固醇受体命名系统","authors":"Kathleen M. Munley , Andrew P. Hoadley , Beau A. Alward","doi":"10.1016/j.ygcen.2023.114436","DOIUrl":null,"url":null,"abstract":"<div><p>Teleost fishes have emerged as tractable models for studying the neuroendocrine regulation of social behavior via molecular genetic techniques, such as CRISPR/Cas9 gene editing. Moreover, teleosts provide an opportunity to investigate the evolution of steroid receptors and their functions, as species within this lineage possess novel steroid receptor paralogs that resulted from a teleost-specific whole genome duplication. Although teleost fishes have grown in popularity as models for behavioral neuroendocrinology, there is not a consistent nomenclature system for steroid receptors and their genes, which may impede a clear understanding of steroid receptor paralogs and their functions. Here, we used a phylogenetic approach to assess the relatedness of protein sequences encoding steroid receptor paralogs in 18 species from 12 different orders of the Infraclass Teleostei. While most similarly named sequences grouped based on the established phylogeny of the teleost lineage, our analysis revealed several inconsistencies in the nomenclature of steroid receptor paralogs, particularly for sequences encoding estrogen receptor beta (ERβ). Based on our results, we propose a nomenclature system for teleosts in which Greek symbols refer to proteins and numbers refer to genes encoding different subtypes of steroid receptors within the five major groups of this nuclear receptor subfamily. Collectively, our results bridge a critical gap by providing a cohesive naming system for steroid receptors in teleost fishes, which will serve to improve communication, promote collaboration, and enhance our understanding of the evolution and function of steroid receptors across vertebrates.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A phylogenetics-based nomenclature system for steroid receptors in teleost fishes\",\"authors\":\"Kathleen M. Munley , Andrew P. Hoadley , Beau A. Alward\",\"doi\":\"10.1016/j.ygcen.2023.114436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Teleost fishes have emerged as tractable models for studying the neuroendocrine regulation of social behavior via molecular genetic techniques, such as CRISPR/Cas9 gene editing. Moreover, teleosts provide an opportunity to investigate the evolution of steroid receptors and their functions, as species within this lineage possess novel steroid receptor paralogs that resulted from a teleost-specific whole genome duplication. Although teleost fishes have grown in popularity as models for behavioral neuroendocrinology, there is not a consistent nomenclature system for steroid receptors and their genes, which may impede a clear understanding of steroid receptor paralogs and their functions. Here, we used a phylogenetic approach to assess the relatedness of protein sequences encoding steroid receptor paralogs in 18 species from 12 different orders of the Infraclass Teleostei. While most similarly named sequences grouped based on the established phylogeny of the teleost lineage, our analysis revealed several inconsistencies in the nomenclature of steroid receptor paralogs, particularly for sequences encoding estrogen receptor beta (ERβ). Based on our results, we propose a nomenclature system for teleosts in which Greek symbols refer to proteins and numbers refer to genes encoding different subtypes of steroid receptors within the five major groups of this nuclear receptor subfamily. Collectively, our results bridge a critical gap by providing a cohesive naming system for steroid receptors in teleost fishes, which will serve to improve communication, promote collaboration, and enhance our understanding of the evolution and function of steroid receptors across vertebrates.</p></div>\",\"PeriodicalId\":12582,\"journal\":{\"name\":\"General and comparative endocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General and comparative endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016648023002411\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016648023002411","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A phylogenetics-based nomenclature system for steroid receptors in teleost fishes
Teleost fishes have emerged as tractable models for studying the neuroendocrine regulation of social behavior via molecular genetic techniques, such as CRISPR/Cas9 gene editing. Moreover, teleosts provide an opportunity to investigate the evolution of steroid receptors and their functions, as species within this lineage possess novel steroid receptor paralogs that resulted from a teleost-specific whole genome duplication. Although teleost fishes have grown in popularity as models for behavioral neuroendocrinology, there is not a consistent nomenclature system for steroid receptors and their genes, which may impede a clear understanding of steroid receptor paralogs and their functions. Here, we used a phylogenetic approach to assess the relatedness of protein sequences encoding steroid receptor paralogs in 18 species from 12 different orders of the Infraclass Teleostei. While most similarly named sequences grouped based on the established phylogeny of the teleost lineage, our analysis revealed several inconsistencies in the nomenclature of steroid receptor paralogs, particularly for sequences encoding estrogen receptor beta (ERβ). Based on our results, we propose a nomenclature system for teleosts in which Greek symbols refer to proteins and numbers refer to genes encoding different subtypes of steroid receptors within the five major groups of this nuclear receptor subfamily. Collectively, our results bridge a critical gap by providing a cohesive naming system for steroid receptors in teleost fishes, which will serve to improve communication, promote collaboration, and enhance our understanding of the evolution and function of steroid receptors across vertebrates.
期刊介绍:
General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.