Dandan Liu, Huimin Qiao, Shiyao Qin, Xin Xing, Kezhou Yan
{"title":"从粉煤灰中高效无模板合成介孔二氧化硅","authors":"Dandan Liu, Huimin Qiao, Shiyao Qin, Xin Xing, Kezhou Yan","doi":"10.1002/apj.3023","DOIUrl":null,"url":null,"abstract":"<p>In the study, the desilication liquids and acid-leached residues derived from the “alumina extraction process” of coal fly ash (CFA) were used as raw materials to prepare sodium silicate precursor. Then, the mesoporous silica with controllable pore structure properties was synthesized by an efficient, template-free process from obtained sodium silicate. The effect of the sodium silicate properties and synthesis conditions on the pore structure properties of disordered mesoporous silica were investigated. The resulting material was characterized by N<sub>2</sub> adsorption–desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) and tested as an adsorbent for removal of lead ions (Pb<sup>2+</sup>). The results showed that the precursor with high modulus (3.0) and concentration (60 g·L<sup>−1</sup>) was beneficial for the synthesis of mesoporous silica with high specific surface area. The mesoporous silica with specific surface area of 690 m<sup>2</sup>·g<sup>−1</sup> and pore volume of 1.28 cm<sup>3</sup>·g<sup>−1</sup> was synthesized at mild aging temperature (40°C) and pH value of 8. Moreover, the materials possessed an adsorption capacity of 303 mg·g<sup>−1</sup> for lead ions after amino modification. The adsorption efficiencies for lead ions were maintained at ~90% after five recovery cycles. Overall, the utilization efficiency of SiO<sub>2</sub> in CFA reached up to 93%.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient and template-free synthesis of mesoporous silica from coal fly ash\",\"authors\":\"Dandan Liu, Huimin Qiao, Shiyao Qin, Xin Xing, Kezhou Yan\",\"doi\":\"10.1002/apj.3023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the study, the desilication liquids and acid-leached residues derived from the “alumina extraction process” of coal fly ash (CFA) were used as raw materials to prepare sodium silicate precursor. Then, the mesoporous silica with controllable pore structure properties was synthesized by an efficient, template-free process from obtained sodium silicate. The effect of the sodium silicate properties and synthesis conditions on the pore structure properties of disordered mesoporous silica were investigated. The resulting material was characterized by N<sub>2</sub> adsorption–desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) and tested as an adsorbent for removal of lead ions (Pb<sup>2+</sup>). The results showed that the precursor with high modulus (3.0) and concentration (60 g·L<sup>−1</sup>) was beneficial for the synthesis of mesoporous silica with high specific surface area. The mesoporous silica with specific surface area of 690 m<sup>2</sup>·g<sup>−1</sup> and pore volume of 1.28 cm<sup>3</sup>·g<sup>−1</sup> was synthesized at mild aging temperature (40°C) and pH value of 8. Moreover, the materials possessed an adsorption capacity of 303 mg·g<sup>−1</sup> for lead ions after amino modification. The adsorption efficiencies for lead ions were maintained at ~90% after five recovery cycles. Overall, the utilization efficiency of SiO<sub>2</sub> in CFA reached up to 93%.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3023\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An efficient and template-free synthesis of mesoporous silica from coal fly ash
In the study, the desilication liquids and acid-leached residues derived from the “alumina extraction process” of coal fly ash (CFA) were used as raw materials to prepare sodium silicate precursor. Then, the mesoporous silica with controllable pore structure properties was synthesized by an efficient, template-free process from obtained sodium silicate. The effect of the sodium silicate properties and synthesis conditions on the pore structure properties of disordered mesoporous silica were investigated. The resulting material was characterized by N2 adsorption–desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) and tested as an adsorbent for removal of lead ions (Pb2+). The results showed that the precursor with high modulus (3.0) and concentration (60 g·L−1) was beneficial for the synthesis of mesoporous silica with high specific surface area. The mesoporous silica with specific surface area of 690 m2·g−1 and pore volume of 1.28 cm3·g−1 was synthesized at mild aging temperature (40°C) and pH value of 8. Moreover, the materials possessed an adsorption capacity of 303 mg·g−1 for lead ions after amino modification. The adsorption efficiencies for lead ions were maintained at ~90% after five recovery cycles. Overall, the utilization efficiency of SiO2 in CFA reached up to 93%.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.