{"title":"霍尔木兹海峡风场及随之产生的波浪的几何效应:案例研究","authors":"Fatemeh Ameri, S. Abbas Haghshenas, Sarmad Ghader","doi":"10.1016/j.dynatmoce.2023.101427","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the impact of surface wind forcing on wave conditions in the Strait of Hormuz, a region with complex wave interactions. The WRF model is used to simulate the wind field with higher accuracy, enabling the generation of waves for both normal and storm conditions in 2011. A sensitivity analysis examines the WRF model's simulated wind field with variations in initial and boundary conditions, spatial resolutions, and adopting two static topographic datasets. Comparisons between simulated wave parameters and observed data from ADCPs at two stations flanking the strait reveal the importance of accurate wind forcing for obtaining a realistic estimation of wave conditions. Wave errors are found to be influenced by fetch length, with larger errors observed for shorter fetches (~100<!-- --> <!-- -->km). However, these errors gradually decrease as the distance from the coast increases. The study emphasizes the importance of incorporating accurate wind data and considering fetch characteristics when simulating wave conditions, which can enhance maritime safety, coastal engineering, and offshore operations in the Strait of Hormuz and other similar regions worldwide. In conclusion, small-scale wind and waves features over the Strait of Hormuz can be better captured with a combination of higher-resolution wind modeling and wave simulation grids with higher spatial resolution.</p>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry effects on wind fields and consequent wave generation in the Strait of Hormuz: A case study\",\"authors\":\"Fatemeh Ameri, S. Abbas Haghshenas, Sarmad Ghader\",\"doi\":\"10.1016/j.dynatmoce.2023.101427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the impact of surface wind forcing on wave conditions in the Strait of Hormuz, a region with complex wave interactions. The WRF model is used to simulate the wind field with higher accuracy, enabling the generation of waves for both normal and storm conditions in 2011. A sensitivity analysis examines the WRF model's simulated wind field with variations in initial and boundary conditions, spatial resolutions, and adopting two static topographic datasets. Comparisons between simulated wave parameters and observed data from ADCPs at two stations flanking the strait reveal the importance of accurate wind forcing for obtaining a realistic estimation of wave conditions. Wave errors are found to be influenced by fetch length, with larger errors observed for shorter fetches (~100<!-- --> <!-- -->km). However, these errors gradually decrease as the distance from the coast increases. The study emphasizes the importance of incorporating accurate wind data and considering fetch characteristics when simulating wave conditions, which can enhance maritime safety, coastal engineering, and offshore operations in the Strait of Hormuz and other similar regions worldwide. In conclusion, small-scale wind and waves features over the Strait of Hormuz can be better captured with a combination of higher-resolution wind modeling and wave simulation grids with higher spatial resolution.</p>\",\"PeriodicalId\":50563,\"journal\":{\"name\":\"Dynamics of Atmospheres and Oceans\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Atmospheres and Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dynatmoce.2023.101427\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.dynatmoce.2023.101427","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Geometry effects on wind fields and consequent wave generation in the Strait of Hormuz: A case study
This study investigates the impact of surface wind forcing on wave conditions in the Strait of Hormuz, a region with complex wave interactions. The WRF model is used to simulate the wind field with higher accuracy, enabling the generation of waves for both normal and storm conditions in 2011. A sensitivity analysis examines the WRF model's simulated wind field with variations in initial and boundary conditions, spatial resolutions, and adopting two static topographic datasets. Comparisons between simulated wave parameters and observed data from ADCPs at two stations flanking the strait reveal the importance of accurate wind forcing for obtaining a realistic estimation of wave conditions. Wave errors are found to be influenced by fetch length, with larger errors observed for shorter fetches (~100 km). However, these errors gradually decrease as the distance from the coast increases. The study emphasizes the importance of incorporating accurate wind data and considering fetch characteristics when simulating wave conditions, which can enhance maritime safety, coastal engineering, and offshore operations in the Strait of Hormuz and other similar regions worldwide. In conclusion, small-scale wind and waves features over the Strait of Hormuz can be better captured with a combination of higher-resolution wind modeling and wave simulation grids with higher spatial resolution.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.