{"title":"作为索波列夫型常数极限的切格常数","authors":"Grey Ercole","doi":"10.1007/s10231-023-01413-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Omega \\)</span> be a bounded, smooth domain of <span>\\({\\mathbb {R}}^{N},\\)</span> <span>\\(N\\ge 2.\\)</span> For <span>\\(1<p<N\\)</span> and <span>\\(0<q(p)<p^{*}:=\\frac{Np}{N-p}\\)</span>, let </p><div><div><span>$$\\begin{aligned} \\lambda _{p,q(p)}:=\\inf \\left\\{ \\int _{\\Omega }\\left| \\nabla u\\right| ^{p}\\textrm{d}x:u\\in W_{0}^{1,p}(\\Omega ) \\ \\text {and} \\ \\int _{\\Omega }\\left| u\\right| ^{q(p)}\\textrm{d}x=1\\right\\} . \\end{aligned}$$</span></div></div><p>We prove that if <span>\\(\\lim _{p\\rightarrow 1^{+}}q(p)=1,\\)</span> then <span>\\(\\lim _{p\\rightarrow 1^{+}}\\lambda _{p,q(p)}=h(\\Omega )\\)</span>, where <span>\\(h(\\Omega )\\)</span> denotes the Cheeger constant of <span>\\(\\Omega .\\)</span> Moreover, we study the behavior of the positive solutions <span>\\(w_{p,q(p)}\\)</span> to the Lane–Emden equation <span>\\(-{\\text {div}} (\\left| \\nabla w\\right| ^{p-2}\\nabla w)=\\left| w\\right| ^{q-2}w,\\)</span> as <span>\\(p\\rightarrow 1^{+}.\\)</span></p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"203 4","pages":"1553 - 1567"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cheeger constant as limit of Sobolev-type constants\",\"authors\":\"Grey Ercole\",\"doi\":\"10.1007/s10231-023-01413-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\Omega \\\\)</span> be a bounded, smooth domain of <span>\\\\({\\\\mathbb {R}}^{N},\\\\)</span> <span>\\\\(N\\\\ge 2.\\\\)</span> For <span>\\\\(1<p<N\\\\)</span> and <span>\\\\(0<q(p)<p^{*}:=\\\\frac{Np}{N-p}\\\\)</span>, let </p><div><div><span>$$\\\\begin{aligned} \\\\lambda _{p,q(p)}:=\\\\inf \\\\left\\\\{ \\\\int _{\\\\Omega }\\\\left| \\\\nabla u\\\\right| ^{p}\\\\textrm{d}x:u\\\\in W_{0}^{1,p}(\\\\Omega ) \\\\ \\\\text {and} \\\\ \\\\int _{\\\\Omega }\\\\left| u\\\\right| ^{q(p)}\\\\textrm{d}x=1\\\\right\\\\} . \\\\end{aligned}$$</span></div></div><p>We prove that if <span>\\\\(\\\\lim _{p\\\\rightarrow 1^{+}}q(p)=1,\\\\)</span> then <span>\\\\(\\\\lim _{p\\\\rightarrow 1^{+}}\\\\lambda _{p,q(p)}=h(\\\\Omega )\\\\)</span>, where <span>\\\\(h(\\\\Omega )\\\\)</span> denotes the Cheeger constant of <span>\\\\(\\\\Omega .\\\\)</span> Moreover, we study the behavior of the positive solutions <span>\\\\(w_{p,q(p)}\\\\)</span> to the Lane–Emden equation <span>\\\\(-{\\\\text {div}} (\\\\left| \\\\nabla w\\\\right| ^{p-2}\\\\nabla w)=\\\\left| w\\\\right| ^{q-2}w,\\\\)</span> as <span>\\\\(p\\\\rightarrow 1^{+}.\\\\)</span></p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"203 4\",\"pages\":\"1553 - 1567\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01413-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01413-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Let (\Omega \) be a bounded, smooth domain of \({\mathbb {R}}^{N},\) \(N\ge 2.\) For \(1<p<N\) and \(0<q(p)<p^{*}:=\frac{Np}{N-p}\), let $$\begin{aligned}。\lambda _{p,q(p)}:=\inf \left\{ \int _{Omega }\left| \nabla u\right| ^{p}\textrm{d}x:u\in W_{0}^{1,p}(\Omega )\text {and}\int _{Omega }\left| u\right| ^{q(p)}\textrm{d}x=1\right\} .\end{aligned}$$我们证明如果(\lim _{p\rightarrow 1^{+}}q(p)=1,\) 那么(\lim _{p\rightarrow 1^{+}}\lambda _{p,q(p)}=h(\Omega )\), 其中(h(\Omega )\)表示(\Omega .\此外,我们还研究了 Lane-Emden 方程 \(-{\text {div}} 的正解 \(w_{p,q(p)}\) 的行为。}(*left| wright| ^{p-2}\nabla w)=left| wright| ^{q-2}w,\) as \(p\rightarrow 1^{+}.\)
We prove that if \(\lim _{p\rightarrow 1^{+}}q(p)=1,\) then \(\lim _{p\rightarrow 1^{+}}\lambda _{p,q(p)}=h(\Omega )\), where \(h(\Omega )\) denotes the Cheeger constant of \(\Omega .\) Moreover, we study the behavior of the positive solutions \(w_{p,q(p)}\) to the Lane–Emden equation \(-{\text {div}} (\left| \nabla w\right| ^{p-2}\nabla w)=\left| w\right| ^{q-2}w,\) as \(p\rightarrow 1^{+}.\)
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.