使用对角化的并行实时配准法:线性问题的理论与实现

IF 1.9 3区 数学 Q1 MATHEMATICS, APPLIED
Gayatri Čaklović, Robert Speck, Martin Frank
{"title":"使用对角化的并行实时配准法:线性问题的理论与实现","authors":"Gayatri Čaklović, Robert Speck, Martin Frank","doi":"10.2140/camcos.2023.18.55","DOIUrl":null,"url":null,"abstract":"<p>We present and analyze a parallel implementation of a parallel-in-time collocation method based on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math>-circulant preconditioned Richardson iterations. While many papers explore this family of single-level, time-parallel “all-at-once” integrators from various perspectives, performance results of actual parallel runs are still scarce. This leaves a critical gap, because the efficiency and applicability of any parallel method heavily rely on the actual parallel performance, with only limited guidance from theoretical considerations. Further, challenges like selecting good parameters, finding suitable communication strategies, and performing a fair comparison to sequential time-stepping methods can be easily missed. In this paper, we first extend the original idea of these fixed point iterative approaches based on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math>-circulant preconditioners to high-order collocation methods, adding yet another level of parallelization in time “across the method”. We derive an adaptive strategy to select a new <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math>-circulant preconditioner for each iteration during runtime for balancing convergence rates, round-off errors, and inexactness of inner system solves for the individual time-steps. After addressing these more theoretical challenges, we present an open-source space- and time-parallel implementation and evaluate its performance for two different test problems. </p>","PeriodicalId":49265,"journal":{"name":"Communications in Applied Mathematics and Computational Science","volume":"31 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A parallel-in-time collocation method using diagonalization: theory and implementation for linear problems\",\"authors\":\"Gayatri Čaklović, Robert Speck, Martin Frank\",\"doi\":\"10.2140/camcos.2023.18.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present and analyze a parallel implementation of a parallel-in-time collocation method based on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi></math>-circulant preconditioned Richardson iterations. While many papers explore this family of single-level, time-parallel “all-at-once” integrators from various perspectives, performance results of actual parallel runs are still scarce. This leaves a critical gap, because the efficiency and applicability of any parallel method heavily rely on the actual parallel performance, with only limited guidance from theoretical considerations. Further, challenges like selecting good parameters, finding suitable communication strategies, and performing a fair comparison to sequential time-stepping methods can be easily missed. In this paper, we first extend the original idea of these fixed point iterative approaches based on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi></math>-circulant preconditioners to high-order collocation methods, adding yet another level of parallelization in time “across the method”. We derive an adaptive strategy to select a new <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi></math>-circulant preconditioner for each iteration during runtime for balancing convergence rates, round-off errors, and inexactness of inner system solves for the individual time-steps. After addressing these more theoretical challenges, we present an open-source space- and time-parallel implementation and evaluate its performance for two different test problems. </p>\",\"PeriodicalId\":49265,\"journal\":{\"name\":\"Communications in Applied Mathematics and Computational Science\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied Mathematics and Computational Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/camcos.2023.18.55\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied Mathematics and Computational Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2023.18.55","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍并分析了一种基于 α 循环预处理理查森迭代法的并行实时配准方法的并行实施。尽管许多论文从不同角度探讨了这一系列单层次、时间并行的 "一次性 "积分器,但实际并行运行的性能结果仍然很少。这就留下了一个关键的空白,因为任何并行方法的效率和适用性都在很大程度上依赖于实际的并行性能,而理论上的指导作用非常有限。此外,选择好的参数、找到合适的通信策略以及与顺序时间步进方法进行公平比较等挑战也很容易被忽略。在本文中,我们首先将这些基于 α-环流前置条件器的定点迭代方法的原始思想扩展到高阶拼合方法,在时间上 "跨方法 "增加了另一个层次的并行化。我们推导出一种自适应策略,用于在运行期间为每次迭代选择新的α-环形预处理器,以平衡收敛率、舍入误差和各时间步内部系统求解的不精确性。在解决了这些理论上的难题后,我们提出了一个空间和时间并行的开源实现方案,并针对两个不同的测试问题对其性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parallel-in-time collocation method using diagonalization: theory and implementation for linear problems

We present and analyze a parallel implementation of a parallel-in-time collocation method based on α-circulant preconditioned Richardson iterations. While many papers explore this family of single-level, time-parallel “all-at-once” integrators from various perspectives, performance results of actual parallel runs are still scarce. This leaves a critical gap, because the efficiency and applicability of any parallel method heavily rely on the actual parallel performance, with only limited guidance from theoretical considerations. Further, challenges like selecting good parameters, finding suitable communication strategies, and performing a fair comparison to sequential time-stepping methods can be easily missed. In this paper, we first extend the original idea of these fixed point iterative approaches based on α-circulant preconditioners to high-order collocation methods, adding yet another level of parallelization in time “across the method”. We derive an adaptive strategy to select a new α-circulant preconditioner for each iteration during runtime for balancing convergence rates, round-off errors, and inexactness of inner system solves for the individual time-steps. After addressing these more theoretical challenges, we present an open-source space- and time-parallel implementation and evaluate its performance for two different test problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Applied Mathematics and Computational Science
Communications in Applied Mathematics and Computational Science MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
3.50
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: CAMCoS accepts innovative papers in all areas where mathematics and applications interact. In particular, the journal welcomes papers where an idea is followed from beginning to end — from an abstract beginning to a piece of software, or from a computational observation to a mathematical theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信