利用 PETSc-PIC 对兰道阻尼进行数值研究

IF 1.9 3区 数学 Q1 MATHEMATICS, APPLIED
Daniel S. Finn, Matthew G. Knepley, Joseph V. Pusztay, Mark F. Adams
{"title":"利用 PETSc-PIC 对兰道阻尼进行数值研究","authors":"Daniel S. Finn, Matthew G. Knepley, Joseph V. Pusztay, Mark F. Adams","doi":"10.2140/camcos.2023.18.135","DOIUrl":null,"url":null,"abstract":"<p>We present a study of the standard plasma physics test, Landau damping, using the particle-in-cell (PIC) algorithm. The Landau damping phenomenon consists of the damping of small oscillations in plasmas without collisions. In the PIC method, a hybrid discretization is constructed with a grid of finitely supported basis functions to represent the electric, magnetic and/or gravitational fields, and a distribution of delta functions to represent the particle field. Approximations to the dispersion relation are found to be inadequate in accurately calculating values for the electric field frequency and damping rate when parameters of the physical system, such as the plasma frequency or thermal velocity, are varied. We present a full derivation and numerical solution for the dispersion relation, and verify the PETSC-PIC numerical solutions to the Vlasov–Poisson system for a large range of wavenumbers and charge densities. </p>","PeriodicalId":49265,"journal":{"name":"Communications in Applied Mathematics and Computational Science","volume":"6 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical study of Landau damping with PETSc-PIC\",\"authors\":\"Daniel S. Finn, Matthew G. Knepley, Joseph V. Pusztay, Mark F. Adams\",\"doi\":\"10.2140/camcos.2023.18.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a study of the standard plasma physics test, Landau damping, using the particle-in-cell (PIC) algorithm. The Landau damping phenomenon consists of the damping of small oscillations in plasmas without collisions. In the PIC method, a hybrid discretization is constructed with a grid of finitely supported basis functions to represent the electric, magnetic and/or gravitational fields, and a distribution of delta functions to represent the particle field. Approximations to the dispersion relation are found to be inadequate in accurately calculating values for the electric field frequency and damping rate when parameters of the physical system, such as the plasma frequency or thermal velocity, are varied. We present a full derivation and numerical solution for the dispersion relation, and verify the PETSC-PIC numerical solutions to the Vlasov–Poisson system for a large range of wavenumbers and charge densities. </p>\",\"PeriodicalId\":49265,\"journal\":{\"name\":\"Communications in Applied Mathematics and Computational Science\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied Mathematics and Computational Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/camcos.2023.18.135\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied Mathematics and Computational Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2023.18.135","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们利用粒子入胞(PIC)算法对标准等离子体物理测试--朗道阻尼--进行了研究。朗道阻尼现象包括等离子体中没有碰撞的微小振荡的阻尼。在 PIC 方法中,使用有限支持的基函数网格构建混合离散,以表示电场、磁场和/或引力场,并使用三角函数分布表示粒子场。当物理系统的参数(如等离子体频率或热速度)发生变化时,我们发现分散关系的近似值不足以精确计算电场频率和阻尼率的值。我们提出了频散关系的完整推导和数值解,并验证了 PETSC-PIC 数值解在较大波数和电荷密度范围内的 Vlasov-Poisson 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical study of Landau damping with PETSc-PIC

We present a study of the standard plasma physics test, Landau damping, using the particle-in-cell (PIC) algorithm. The Landau damping phenomenon consists of the damping of small oscillations in plasmas without collisions. In the PIC method, a hybrid discretization is constructed with a grid of finitely supported basis functions to represent the electric, magnetic and/or gravitational fields, and a distribution of delta functions to represent the particle field. Approximations to the dispersion relation are found to be inadequate in accurately calculating values for the electric field frequency and damping rate when parameters of the physical system, such as the plasma frequency or thermal velocity, are varied. We present a full derivation and numerical solution for the dispersion relation, and verify the PETSC-PIC numerical solutions to the Vlasov–Poisson system for a large range of wavenumbers and charge densities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Applied Mathematics and Computational Science
Communications in Applied Mathematics and Computational Science MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
3.50
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: CAMCoS accepts innovative papers in all areas where mathematics and applications interact. In particular, the journal welcomes papers where an idea is followed from beginning to end — from an abstract beginning to a piece of software, or from a computational observation to a mathematical theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信