Carlos Muñoz Moncayo, Manuel Quezada de Luna, David I. Ketcheson
{"title":"浅水方程和欧拉方程的黎曼迭代求解器比较研究","authors":"Carlos Muñoz Moncayo, Manuel Quezada de Luna, David I. Ketcheson","doi":"10.2140/camcos.2023.18.107","DOIUrl":null,"url":null,"abstract":"<p>We investigate the achievable efficiency of exact solvers for the Riemann problem for two systems of first-order hyperbolic PDEs: the shallow water equations and the Euler equations of compressible gas dynamics. Many approximate solvers have been developed for these systems; exact solution algorithms have received less attention because the computation of the exact solution typically requires an iterative solution of algebraic equations, which can be expensive or unreliable. We investigate a range of iterative algorithms and initial guesses. In addition to existing algorithms, we propose simple new algorithms that are guaranteed to converge and to remain in the range of physically admissible values at all iterations. We apply the existing and new iterative schemes to an ensemble of test Riemann problems. For the shallow water equations, we find that Newton’s method with a simple modification converges quickly and reliably. For the Euler equations we obtain similar results; however, when the required precision is high, a combination of Ostrowski and Newton iterations converges faster. These solvers are slower than standard approximate solvers like Roe and HLLE, but come within a factor of two in speed. We also provide a preliminary comparison of the accuracy of a finite volume discretization using an exact solver versus standard approximate solvers. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of iterative Riemann solvers for the shallow water and Euler equations\",\"authors\":\"Carlos Muñoz Moncayo, Manuel Quezada de Luna, David I. Ketcheson\",\"doi\":\"10.2140/camcos.2023.18.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the achievable efficiency of exact solvers for the Riemann problem for two systems of first-order hyperbolic PDEs: the shallow water equations and the Euler equations of compressible gas dynamics. Many approximate solvers have been developed for these systems; exact solution algorithms have received less attention because the computation of the exact solution typically requires an iterative solution of algebraic equations, which can be expensive or unreliable. We investigate a range of iterative algorithms and initial guesses. In addition to existing algorithms, we propose simple new algorithms that are guaranteed to converge and to remain in the range of physically admissible values at all iterations. We apply the existing and new iterative schemes to an ensemble of test Riemann problems. For the shallow water equations, we find that Newton’s method with a simple modification converges quickly and reliably. For the Euler equations we obtain similar results; however, when the required precision is high, a combination of Ostrowski and Newton iterations converges faster. These solvers are slower than standard approximate solvers like Roe and HLLE, but come within a factor of two in speed. We also provide a preliminary comparison of the accuracy of a finite volume discretization using an exact solver versus standard approximate solvers. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/camcos.2023.18.107\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2023.18.107","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A comparative study of iterative Riemann solvers for the shallow water and Euler equations
We investigate the achievable efficiency of exact solvers for the Riemann problem for two systems of first-order hyperbolic PDEs: the shallow water equations and the Euler equations of compressible gas dynamics. Many approximate solvers have been developed for these systems; exact solution algorithms have received less attention because the computation of the exact solution typically requires an iterative solution of algebraic equations, which can be expensive or unreliable. We investigate a range of iterative algorithms and initial guesses. In addition to existing algorithms, we propose simple new algorithms that are guaranteed to converge and to remain in the range of physically admissible values at all iterations. We apply the existing and new iterative schemes to an ensemble of test Riemann problems. For the shallow water equations, we find that Newton’s method with a simple modification converges quickly and reliably. For the Euler equations we obtain similar results; however, when the required precision is high, a combination of Ostrowski and Newton iterations converges faster. These solvers are slower than standard approximate solvers like Roe and HLLE, but come within a factor of two in speed. We also provide a preliminary comparison of the accuracy of a finite volume discretization using an exact solver versus standard approximate solvers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.