Weizhuo Li , Zhiming Bao , Qingchen Gao , Qing Du , Kui Jiao
{"title":"基于多级 CFD 平台的零下温度锂离子电池新型脉冲预热策略研究","authors":"Weizhuo Li , Zhiming Bao , Qingchen Gao , Qing Du , Kui Jiao","doi":"10.1016/j.etran.2023.100307","DOIUrl":null,"url":null,"abstract":"<div><p>Warming up lithium-ion batteries from cold environments to room temperature rapidly and safely is the key to popularizing battery electric vehicles<span> in cold regions. Pulse preheating technology is an effective internal heating method while facing challenges such as low heating rate, high energy consumption, and risk of over-charging or discharging. Here, for the first time, a multi-level electrochemical-thermal coupling model is developed on an open-source CFD platform. Based on this model, we perform comprehensive simulations for the pulse heating process with various parameters and strategies from plate level to cell level to module level. In addition, two innovative heating strategies, namely varied rate pulse and hybrid pulse, are proposed, where the latter integrates the pulse heating and electric heating. Our main results show that the proposed hybrid pulse strategy can provide cells with an over 2.5 times faster heating rate from −20 °C to 0 °C and save nearly 60 % energy consumption compared to the single pulse heating at 6 C-rate, exhibiting a great prospect in circumventing the low-temperature effect. Besides, the internal temperature difference can be controlled. A high pulse frequency is suggested to achieve better temperature consistency within cells and avoid noticeable changes in the cell internal physical fields.</span></p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"19 ","pages":"Article 100307"},"PeriodicalIF":15.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of novel pulse preheating strategies for lithium-ion batteries at subzero temperature based on a multi-level CFD platform\",\"authors\":\"Weizhuo Li , Zhiming Bao , Qingchen Gao , Qing Du , Kui Jiao\",\"doi\":\"10.1016/j.etran.2023.100307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Warming up lithium-ion batteries from cold environments to room temperature rapidly and safely is the key to popularizing battery electric vehicles<span> in cold regions. Pulse preheating technology is an effective internal heating method while facing challenges such as low heating rate, high energy consumption, and risk of over-charging or discharging. Here, for the first time, a multi-level electrochemical-thermal coupling model is developed on an open-source CFD platform. Based on this model, we perform comprehensive simulations for the pulse heating process with various parameters and strategies from plate level to cell level to module level. In addition, two innovative heating strategies, namely varied rate pulse and hybrid pulse, are proposed, where the latter integrates the pulse heating and electric heating. Our main results show that the proposed hybrid pulse strategy can provide cells with an over 2.5 times faster heating rate from −20 °C to 0 °C and save nearly 60 % energy consumption compared to the single pulse heating at 6 C-rate, exhibiting a great prospect in circumventing the low-temperature effect. Besides, the internal temperature difference can be controlled. A high pulse frequency is suggested to achieve better temperature consistency within cells and avoid noticeable changes in the cell internal physical fields.</span></p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"19 \",\"pages\":\"Article 100307\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116823000826\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116823000826","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation of novel pulse preheating strategies for lithium-ion batteries at subzero temperature based on a multi-level CFD platform
Warming up lithium-ion batteries from cold environments to room temperature rapidly and safely is the key to popularizing battery electric vehicles in cold regions. Pulse preheating technology is an effective internal heating method while facing challenges such as low heating rate, high energy consumption, and risk of over-charging or discharging. Here, for the first time, a multi-level electrochemical-thermal coupling model is developed on an open-source CFD platform. Based on this model, we perform comprehensive simulations for the pulse heating process with various parameters and strategies from plate level to cell level to module level. In addition, two innovative heating strategies, namely varied rate pulse and hybrid pulse, are proposed, where the latter integrates the pulse heating and electric heating. Our main results show that the proposed hybrid pulse strategy can provide cells with an over 2.5 times faster heating rate from −20 °C to 0 °C and save nearly 60 % energy consumption compared to the single pulse heating at 6 C-rate, exhibiting a great prospect in circumventing the low-temperature effect. Besides, the internal temperature difference can be controlled. A high pulse frequency is suggested to achieve better temperature consistency within cells and avoid noticeable changes in the cell internal physical fields.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.