{"title":"图卷积如何放大推荐时的人气偏差?","authors":"","doi":"10.1007/s11704-023-2655-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Graph convolutional networks (GCNs) have become prevalent in recommender system (RS) due to their superiority in modeling collaborative patterns. Although improving the overall accuracy, GCNs unfortunately amplify popularity bias — tail items are less likely to be recommended. This effect prevents the GCN-based RS from making precise and fair recommendations, decreasing the effectiveness of recommender systems in the long run.</p> <p>In this paper, we investigate how graph convolutions amplify the popularity bias in RS. Through theoretical analyses, we identify two fundamental factors: (1) with graph convolution (i.e., neighborhood aggregation), popular items exert larger influence than tail items on neighbor users, making the users move towards popular items in the representation space; (2) after multiple times of graph convolution, popular items would affect more high-order neighbors and become more influential. The two points make popular items get closer to almost users and thus being recommended more frequently. To rectify this, we propose to estimate the amplified effect of popular nodes on each node’s representation, and intervene the effect after each graph convolution. Specifically, we adopt clustering to discover highly-influential nodes and estimate the amplification effect of each node, then remove the effect from the node embeddings at each graph convolution layer. Our method is simple and generic — it can be used in the inference stage to correct existing models rather than training a new model from scratch, and can be applied to various GCN models. We demonstrate our method on two representative GCN backbones LightGCN and UltraGCN, verifying its ability in improving the recommendations of tail items without sacrificing the performance of popular items. Codes are open-sourced <sup>1)</sup>.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"19 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How graph convolutions amplify popularity bias for recommendation?\",\"authors\":\"\",\"doi\":\"10.1007/s11704-023-2655-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Graph convolutional networks (GCNs) have become prevalent in recommender system (RS) due to their superiority in modeling collaborative patterns. Although improving the overall accuracy, GCNs unfortunately amplify popularity bias — tail items are less likely to be recommended. This effect prevents the GCN-based RS from making precise and fair recommendations, decreasing the effectiveness of recommender systems in the long run.</p> <p>In this paper, we investigate how graph convolutions amplify the popularity bias in RS. Through theoretical analyses, we identify two fundamental factors: (1) with graph convolution (i.e., neighborhood aggregation), popular items exert larger influence than tail items on neighbor users, making the users move towards popular items in the representation space; (2) after multiple times of graph convolution, popular items would affect more high-order neighbors and become more influential. The two points make popular items get closer to almost users and thus being recommended more frequently. To rectify this, we propose to estimate the amplified effect of popular nodes on each node’s representation, and intervene the effect after each graph convolution. Specifically, we adopt clustering to discover highly-influential nodes and estimate the amplification effect of each node, then remove the effect from the node embeddings at each graph convolution layer. Our method is simple and generic — it can be used in the inference stage to correct existing models rather than training a new model from scratch, and can be applied to various GCN models. We demonstrate our method on two representative GCN backbones LightGCN and UltraGCN, verifying its ability in improving the recommendations of tail items without sacrificing the performance of popular items. Codes are open-sourced <sup>1)</sup>.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-023-2655-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2655-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
How graph convolutions amplify popularity bias for recommendation?
Abstract
Graph convolutional networks (GCNs) have become prevalent in recommender system (RS) due to their superiority in modeling collaborative patterns. Although improving the overall accuracy, GCNs unfortunately amplify popularity bias — tail items are less likely to be recommended. This effect prevents the GCN-based RS from making precise and fair recommendations, decreasing the effectiveness of recommender systems in the long run.
In this paper, we investigate how graph convolutions amplify the popularity bias in RS. Through theoretical analyses, we identify two fundamental factors: (1) with graph convolution (i.e., neighborhood aggregation), popular items exert larger influence than tail items on neighbor users, making the users move towards popular items in the representation space; (2) after multiple times of graph convolution, popular items would affect more high-order neighbors and become more influential. The two points make popular items get closer to almost users and thus being recommended more frequently. To rectify this, we propose to estimate the amplified effect of popular nodes on each node’s representation, and intervene the effect after each graph convolution. Specifically, we adopt clustering to discover highly-influential nodes and estimate the amplification effect of each node, then remove the effect from the node embeddings at each graph convolution layer. Our method is simple and generic — it can be used in the inference stage to correct existing models rather than training a new model from scratch, and can be applied to various GCN models. We demonstrate our method on two representative GCN backbones LightGCN and UltraGCN, verifying its ability in improving the recommendations of tail items without sacrificing the performance of popular items. Codes are open-sourced 1).
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.