用钻石™核酸染料染色发根的 RapidHIT™ ID 系统评估

IF 3.2 2区 医学 Q2 GENETICS & HEREDITY
Tabarek Aljumaili, Alicia M. Haines
{"title":"用钻石™核酸染料染色发根的 RapidHIT™ ID 系统评估","authors":"Tabarek Aljumaili,&nbsp;Alicia M. Haines","doi":"10.1016/j.fsigen.2023.103003","DOIUrl":null,"url":null,"abstract":"<div><p>The RapidHIT™ ID (RHID) system was evaluated for its suitability in processing a single hair root to obtain informative DNA profiles. Hair samples were assessed for nuclear DNA prior to DNA analysis using Diamond™ Nucleic Acid Dye (DD) and real-time Extended Depth of Field (EDF) imaging to visualise and count nuclei if present. Hairs were viewed under an Optico N300F LED Fluorescent Microscope and imaged using a MIchrome 5 Pro camera. Hair roots were processed through both the ACE GlobalFiler™ Express sample cartridge and the RapidINTEL™ sample cartridge. A total of 44 hairs including shed hairs (9) and plucked hairs (35) from 8 donors were evaluated in this study. The processing of hairs using the RHID system required the modification of a standard swab that allowed for hairs to be easily collected and placed into the cartridge but also allowed for the re-collection of hair roots post RHID analysis (for potential standard DNA workflow). 90% of plucked hairs with a high nuclei count (&gt;100) resulted in a high partial or full DNA profile, with the remaining 10% resulting in a low partial profile. 44% of shed hairs resulted in a low partial profile, with the remaining hairs resulting in a null profile. This study demonstrated that the RHID system could successfully obtain a DNA profile from a single hair root with nuclei present post-DD staining. According to these results, it is suggested that when dealing with hairs containing fewer than 50 nuclei, using the RapidINTEL™ cartridge can enhance allele recovery.</p></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872497323001783/pdfft?md5=9b267f59bdbf0fa74cdcc151affbca69&pid=1-s2.0-S1872497323001783-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An evaluation of the RapidHIT™ ID system for hair roots stained with Diamond™ Nucleic Acid Dye\",\"authors\":\"Tabarek Aljumaili,&nbsp;Alicia M. Haines\",\"doi\":\"10.1016/j.fsigen.2023.103003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The RapidHIT™ ID (RHID) system was evaluated for its suitability in processing a single hair root to obtain informative DNA profiles. Hair samples were assessed for nuclear DNA prior to DNA analysis using Diamond™ Nucleic Acid Dye (DD) and real-time Extended Depth of Field (EDF) imaging to visualise and count nuclei if present. Hairs were viewed under an Optico N300F LED Fluorescent Microscope and imaged using a MIchrome 5 Pro camera. Hair roots were processed through both the ACE GlobalFiler™ Express sample cartridge and the RapidINTEL™ sample cartridge. A total of 44 hairs including shed hairs (9) and plucked hairs (35) from 8 donors were evaluated in this study. The processing of hairs using the RHID system required the modification of a standard swab that allowed for hairs to be easily collected and placed into the cartridge but also allowed for the re-collection of hair roots post RHID analysis (for potential standard DNA workflow). 90% of plucked hairs with a high nuclei count (&gt;100) resulted in a high partial or full DNA profile, with the remaining 10% resulting in a low partial profile. 44% of shed hairs resulted in a low partial profile, with the remaining hairs resulting in a null profile. This study demonstrated that the RHID system could successfully obtain a DNA profile from a single hair root with nuclei present post-DD staining. According to these results, it is suggested that when dealing with hairs containing fewer than 50 nuclei, using the RapidINTEL™ cartridge can enhance allele recovery.</p></div>\",\"PeriodicalId\":50435,\"journal\":{\"name\":\"Forensic Science International-Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1872497323001783/pdfft?md5=9b267f59bdbf0fa74cdcc151affbca69&pid=1-s2.0-S1872497323001783-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872497323001783\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497323001783","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

对 RapidHIT™ ID (RHID) 系统进行了评估,以确定其是否适合处理单根头发以获得信息丰富的 DNA 图谱。在进行 DNA 分析之前,使用 Diamond™ 核酸染料 (DD) 和实时扩展景深 (EDF) 成像对毛发样本的核 DNA 进行评估,以观察和计数存在的核。在 Optico N300F LED 荧光显微镜下观察毛发,并使用 MIchrome 5 Pro 相机成像。发根通过 ACE GlobalFiler™ Express 样品盒和 RapidINTEL™ 样品盒进行处理。本研究共评估了 44 根头发,包括来自 8 位捐献者的脱落头发(9 根)和拔下的头发(35 根)。使用 RHID 系统处理毛发时,需要对标准拭子进行改装,以便于收集毛发并将其放入样本盒,同时还能在 RHID 分析后重新收集发根(用于潜在的标准 DNA 工作流程)。90%的拔出毛发具有较高的细胞核计数(100),可获得较高的部分或全部 DNA 图谱,其余 10%的毛发则只有较低的部分 DNA 图谱。44%的脱落毛发显示了低部分DNA图谱,其余毛发显示了空图谱。这项研究表明,RHID 系统能成功地从单根毛发中获得 DNA 图谱,且 DNA 图谱中的细胞核在 DD 染色后仍然存在。根据这些结果,建议在处理含有少于 50 个细胞核的毛发时,使用 RapidINTEL™ 试剂盒可以提高等位基因的回收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evaluation of the RapidHIT™ ID system for hair roots stained with Diamond™ Nucleic Acid Dye

The RapidHIT™ ID (RHID) system was evaluated for its suitability in processing a single hair root to obtain informative DNA profiles. Hair samples were assessed for nuclear DNA prior to DNA analysis using Diamond™ Nucleic Acid Dye (DD) and real-time Extended Depth of Field (EDF) imaging to visualise and count nuclei if present. Hairs were viewed under an Optico N300F LED Fluorescent Microscope and imaged using a MIchrome 5 Pro camera. Hair roots were processed through both the ACE GlobalFiler™ Express sample cartridge and the RapidINTEL™ sample cartridge. A total of 44 hairs including shed hairs (9) and plucked hairs (35) from 8 donors were evaluated in this study. The processing of hairs using the RHID system required the modification of a standard swab that allowed for hairs to be easily collected and placed into the cartridge but also allowed for the re-collection of hair roots post RHID analysis (for potential standard DNA workflow). 90% of plucked hairs with a high nuclei count (>100) resulted in a high partial or full DNA profile, with the remaining 10% resulting in a low partial profile. 44% of shed hairs resulted in a low partial profile, with the remaining hairs resulting in a null profile. This study demonstrated that the RHID system could successfully obtain a DNA profile from a single hair root with nuclei present post-DD staining. According to these results, it is suggested that when dealing with hairs containing fewer than 50 nuclei, using the RapidINTEL™ cartridge can enhance allele recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
32.30%
发文量
132
审稿时长
11.3 weeks
期刊介绍: Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts. The scope of the journal includes: Forensic applications of human polymorphism. Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies. Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms. Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications. Non-human DNA polymorphisms for crime scene investigation. Population genetics of human polymorphisms of forensic interest. Population data, especially from DNA polymorphisms of interest for the solution of forensic problems. DNA typing methodologies and strategies. Biostatistical methods in forensic genetics. Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches. Standards in forensic genetics. Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards. Quality control. Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies. Criminal DNA databases. Technical, legal and statistical issues. General ethical and legal issues related to forensic genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信