Jiacheng Li, Ruize Han, Wei Feng, Haomin Yan, Song Wang
{"title":"多人场景中的非接触式交互识别和交互者检测","authors":"Jiacheng Li, Ruize Han, Wei Feng, Haomin Yan, Song Wang","doi":"10.1007/s11704-023-2418-0","DOIUrl":null,"url":null,"abstract":"<p>Human interaction recognition is an essential task in video surveillance. The current works on human interaction recognition mainly focus on the scenarios only containing the close-contact interactive subjects without other people. In this paper, we handle more practical but more challenging scenarios where interactive subjects are contactless and other subjects not involved in the interactions of interest are also present in the scene. To address this problem, we propose an Interactive Relation Embedding Network (IRE-Net) to simultaneously identify the subjects involved in the interaction and recognize their interaction category. As a new problem, we also build a new dataset with annotations and metrics for performance evaluation. Experimental results on this dataset show significant improvements of the proposed method when compared with current methods developed for human interaction recognition and group activity recognition.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"27 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contactless interaction recognition and interactor detection in multi-person scenes\",\"authors\":\"Jiacheng Li, Ruize Han, Wei Feng, Haomin Yan, Song Wang\",\"doi\":\"10.1007/s11704-023-2418-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human interaction recognition is an essential task in video surveillance. The current works on human interaction recognition mainly focus on the scenarios only containing the close-contact interactive subjects without other people. In this paper, we handle more practical but more challenging scenarios where interactive subjects are contactless and other subjects not involved in the interactions of interest are also present in the scene. To address this problem, we propose an Interactive Relation Embedding Network (IRE-Net) to simultaneously identify the subjects involved in the interaction and recognize their interaction category. As a new problem, we also build a new dataset with annotations and metrics for performance evaluation. Experimental results on this dataset show significant improvements of the proposed method when compared with current methods developed for human interaction recognition and group activity recognition.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-023-2418-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2418-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Contactless interaction recognition and interactor detection in multi-person scenes
Human interaction recognition is an essential task in video surveillance. The current works on human interaction recognition mainly focus on the scenarios only containing the close-contact interactive subjects without other people. In this paper, we handle more practical but more challenging scenarios where interactive subjects are contactless and other subjects not involved in the interactions of interest are also present in the scene. To address this problem, we propose an Interactive Relation Embedding Network (IRE-Net) to simultaneously identify the subjects involved in the interaction and recognize their interaction category. As a new problem, we also build a new dataset with annotations and metrics for performance evaluation. Experimental results on this dataset show significant improvements of the proposed method when compared with current methods developed for human interaction recognition and group activity recognition.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.