重返大气层安全:航天器设计方案的分析和等离子风洞试验,以降低地面伤亡风险

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lucia Suriani , Antonio Caiazzo , Britta Ganzer , Tobias Lips , Patrice Laurenti , Bradley Lockett , Thorn Schleutker , Tiago Soares , James Beck
{"title":"重返大气层安全:航天器设计方案的分析和等离子风洞试验,以降低地面伤亡风险","authors":"Lucia Suriani ,&nbsp;Antonio Caiazzo ,&nbsp;Britta Ganzer ,&nbsp;Tobias Lips ,&nbsp;Patrice Laurenti ,&nbsp;Bradley Lockett ,&nbsp;Thorn Schleutker ,&nbsp;Tiago Soares ,&nbsp;James Beck","doi":"10.1016/j.jsse.2023.11.014","DOIUrl":null,"url":null,"abstract":"<div><p>In compliance with ISO 24,113 and ESA Space Debris Mitigation requirements, spacecrafts in Low Earth Orbit (LEO) must be removed from their operational orbit within 25 years and re-enter the Earth's atmosphere having an on-ground casualty risk lower than 1 in 10,000.</p><p><span>To maximize the number of uncontrolled re-entries, which have much less impact on system mass and costs, ESA's Clean Space initiative is investigating design for containment (D4C) techniques and collaborating with European industries and space agencies to assess, model, analyse, and test new concepts through re-entry tools and plasma wind tunnel experiments. The main objectives are to understand the </span>survivability<span> of materials and techniques suitable for different containment concepts, to improve re-entry modelling, and implement effective D4C measures.</span></p><p>This paper shows the results of these activities, that have been the first milestones in the knowledge of D4C, although further investigations are needed.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re‐entry safety: Analysis and plasma wind tunnel testing of spacecraft design solutions to reduce on‐ground casualty risk\",\"authors\":\"Lucia Suriani ,&nbsp;Antonio Caiazzo ,&nbsp;Britta Ganzer ,&nbsp;Tobias Lips ,&nbsp;Patrice Laurenti ,&nbsp;Bradley Lockett ,&nbsp;Thorn Schleutker ,&nbsp;Tiago Soares ,&nbsp;James Beck\",\"doi\":\"10.1016/j.jsse.2023.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In compliance with ISO 24,113 and ESA Space Debris Mitigation requirements, spacecrafts in Low Earth Orbit (LEO) must be removed from their operational orbit within 25 years and re-enter the Earth's atmosphere having an on-ground casualty risk lower than 1 in 10,000.</p><p><span>To maximize the number of uncontrolled re-entries, which have much less impact on system mass and costs, ESA's Clean Space initiative is investigating design for containment (D4C) techniques and collaborating with European industries and space agencies to assess, model, analyse, and test new concepts through re-entry tools and plasma wind tunnel experiments. The main objectives are to understand the </span>survivability<span> of materials and techniques suitable for different containment concepts, to improve re-entry modelling, and implement effective D4C measures.</span></p><p>This paper shows the results of these activities, that have been the first milestones in the knowledge of D4C, although further investigations are needed.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468896723001398\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896723001398","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

根据 ISO 24,113 和欧空局空间碎片缓减要求,低地球轨道(LEO)上的航天器必须在 25 年内脱离运行轨道,重返地球大气层的地面伤亡风险低于万分之一。为了最大限度地增加对系统质量和成本影响较小的不受控制的重返次数,欧空局的 "清洁空间 "计划正在研究遏制设计(D4C)技术,并与欧洲工业界和空间机构合作,通过重返工具和等离子风洞实验对新概念进行评估、建模、分析和测试。主要目标是了解适用于不同安全壳概念的材料和技术的生存能力,改进重返模型,并实施有效的 D4C 措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Re‐entry safety: Analysis and plasma wind tunnel testing of spacecraft design solutions to reduce on‐ground casualty risk

In compliance with ISO 24,113 and ESA Space Debris Mitigation requirements, spacecrafts in Low Earth Orbit (LEO) must be removed from their operational orbit within 25 years and re-enter the Earth's atmosphere having an on-ground casualty risk lower than 1 in 10,000.

To maximize the number of uncontrolled re-entries, which have much less impact on system mass and costs, ESA's Clean Space initiative is investigating design for containment (D4C) techniques and collaborating with European industries and space agencies to assess, model, analyse, and test new concepts through re-entry tools and plasma wind tunnel experiments. The main objectives are to understand the survivability of materials and techniques suitable for different containment concepts, to improve re-entry modelling, and implement effective D4C measures.

This paper shows the results of these activities, that have been the first milestones in the knowledge of D4C, although further investigations are needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信