Zahra Ghanbari , Nima Jafari Navimipour , Mehdi Hosseinzadeh , Hassan Shakeri , Aso Darwesh
{"title":"基于低功耗和有损网络的新型移动物联网轻量级路由协议--使用模糊逻辑方法","authors":"Zahra Ghanbari , Nima Jafari Navimipour , Mehdi Hosseinzadeh , Hassan Shakeri , Aso Darwesh","doi":"10.1016/j.pmcj.2023.101872","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The IoT<span> devices with embedded mobile devices create the Internet of Mobile Things (IoMT) paradigm. Mobility is not supported by the routing protocol for low-power and lossy networks (RPL) created for static networks. IoMT has raised routing challenges such as link failure, instability, energy depletion, </span></span>packet loss<span>, and handover delay in the network. In this context, IoMT Fuzzy-based RPL (IoMT-FRPL) is proposed in this paper to enhance routing performance. Receiving Signal Strength Indicator (RSSI), </span></span>Euclidean distance<span>, Hop Count, and Expected Transmission Count (ETX) metrics are built into the fuzzy interface system for the mobile nodes in the network to conserve energy. The IoMT-FRPL consists of the following three key steps: The first steps are data transmission and motion investigation, the second is fuzzy-based prediction of a new static parent for the mobile node, and the third is verifying the unique attachment point. When conventional RPL, mRPL, and EMA-RPL were compared to IoMT-performance FRPL's in Cooja/Contiki 2.7, the simulation results revealed improvements in energy consumption, handover delay, packet delivery rate (PDR), and signaling cost.</span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"97 ","pages":"Article 101872"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Lightweight Routing Protocol for Internet of Mobile Things Based on Low Power and Lossy Network Using a Fuzzy-Logic Method\",\"authors\":\"Zahra Ghanbari , Nima Jafari Navimipour , Mehdi Hosseinzadeh , Hassan Shakeri , Aso Darwesh\",\"doi\":\"10.1016/j.pmcj.2023.101872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The IoT<span> devices with embedded mobile devices create the Internet of Mobile Things (IoMT) paradigm. Mobility is not supported by the routing protocol for low-power and lossy networks (RPL) created for static networks. IoMT has raised routing challenges such as link failure, instability, energy depletion, </span></span>packet loss<span>, and handover delay in the network. In this context, IoMT Fuzzy-based RPL (IoMT-FRPL) is proposed in this paper to enhance routing performance. Receiving Signal Strength Indicator (RSSI), </span></span>Euclidean distance<span>, Hop Count, and Expected Transmission Count (ETX) metrics are built into the fuzzy interface system for the mobile nodes in the network to conserve energy. The IoMT-FRPL consists of the following three key steps: The first steps are data transmission and motion investigation, the second is fuzzy-based prediction of a new static parent for the mobile node, and the third is verifying the unique attachment point. When conventional RPL, mRPL, and EMA-RPL were compared to IoMT-performance FRPL's in Cooja/Contiki 2.7, the simulation results revealed improvements in energy consumption, handover delay, packet delivery rate (PDR), and signaling cost.</span></p></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":\"97 \",\"pages\":\"Article 101872\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157411922300130X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157411922300130X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A New Lightweight Routing Protocol for Internet of Mobile Things Based on Low Power and Lossy Network Using a Fuzzy-Logic Method
The IoT devices with embedded mobile devices create the Internet of Mobile Things (IoMT) paradigm. Mobility is not supported by the routing protocol for low-power and lossy networks (RPL) created for static networks. IoMT has raised routing challenges such as link failure, instability, energy depletion, packet loss, and handover delay in the network. In this context, IoMT Fuzzy-based RPL (IoMT-FRPL) is proposed in this paper to enhance routing performance. Receiving Signal Strength Indicator (RSSI), Euclidean distance, Hop Count, and Expected Transmission Count (ETX) metrics are built into the fuzzy interface system for the mobile nodes in the network to conserve energy. The IoMT-FRPL consists of the following three key steps: The first steps are data transmission and motion investigation, the second is fuzzy-based prediction of a new static parent for the mobile node, and the third is verifying the unique attachment point. When conventional RPL, mRPL, and EMA-RPL were compared to IoMT-performance FRPL's in Cooja/Contiki 2.7, the simulation results revealed improvements in energy consumption, handover delay, packet delivery rate (PDR), and signaling cost.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.