{"title":"纯虚四元数矩阵低秩分解的实结构保留算法及其在信号处理中的应用","authors":"G. Wang","doi":"10.32523/2306-6172-2023-11-4-117-129","DOIUrl":null,"url":null,"abstract":"With the increasing use of quaternions in fields such as quantum mechanics, rigid body rotation, signal and color image processing, and aerospace engineering, three- dimensional signal models represented by pure imaginary quaternion matrices have been cre- ated. This model treats the 3D information as a whole, and the processing preserves the intrinsic connections between the different channels. However, the computational process of quaternion algebra often generates real parts, which are inevitable. How to ensure the pure imaginary properties of 3D signal models is also a research priority. In this paper, we inves- tigate the low-rank decomposition of pure imaginary quaternion matrices using least squares iteration and give a real structure-preserving algorithm for the low-rank decomposition based on the isomorphic real representation. In addition, this matrix decomposition algorithm is applied to color image compression and 3D wave signal denoising problems. Numerical ex- periments show the effectiveness of the algorithm in this paper.","PeriodicalId":42910,"journal":{"name":"Eurasian Journal of Mathematical and Computer Applications","volume":"85 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A REAL STRUCTURE-PRESERVING ALGORITHM FOR THE LOW- RANK DECOMPOSITION OF PURE IMAGINARY QUATERNION MATRICES AND ITS APPLICATIONS IN SIGNAL PROCESSING\",\"authors\":\"G. Wang\",\"doi\":\"10.32523/2306-6172-2023-11-4-117-129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing use of quaternions in fields such as quantum mechanics, rigid body rotation, signal and color image processing, and aerospace engineering, three- dimensional signal models represented by pure imaginary quaternion matrices have been cre- ated. This model treats the 3D information as a whole, and the processing preserves the intrinsic connections between the different channels. However, the computational process of quaternion algebra often generates real parts, which are inevitable. How to ensure the pure imaginary properties of 3D signal models is also a research priority. In this paper, we inves- tigate the low-rank decomposition of pure imaginary quaternion matrices using least squares iteration and give a real structure-preserving algorithm for the low-rank decomposition based on the isomorphic real representation. In addition, this matrix decomposition algorithm is applied to color image compression and 3D wave signal denoising problems. Numerical ex- periments show the effectiveness of the algorithm in this paper.\",\"PeriodicalId\":42910,\"journal\":{\"name\":\"Eurasian Journal of Mathematical and Computer Applications\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Journal of Mathematical and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2023-11-4-117-129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Mathematical and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2023-11-4-117-129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A REAL STRUCTURE-PRESERVING ALGORITHM FOR THE LOW- RANK DECOMPOSITION OF PURE IMAGINARY QUATERNION MATRICES AND ITS APPLICATIONS IN SIGNAL PROCESSING
With the increasing use of quaternions in fields such as quantum mechanics, rigid body rotation, signal and color image processing, and aerospace engineering, three- dimensional signal models represented by pure imaginary quaternion matrices have been cre- ated. This model treats the 3D information as a whole, and the processing preserves the intrinsic connections between the different channels. However, the computational process of quaternion algebra often generates real parts, which are inevitable. How to ensure the pure imaginary properties of 3D signal models is also a research priority. In this paper, we inves- tigate the low-rank decomposition of pure imaginary quaternion matrices using least squares iteration and give a real structure-preserving algorithm for the low-rank decomposition based on the isomorphic real representation. In addition, this matrix decomposition algorithm is applied to color image compression and 3D wave signal denoising problems. Numerical ex- periments show the effectiveness of the algorithm in this paper.
期刊介绍:
Eurasian Journal of Mathematical and Computer Applications (EJMCA) publishes carefully selected original research papers in all areas of Applied mathematics first of all from Europe and Asia. However papers by mathematicians from other continents are also welcome. From time to time Eurasian Journal of Mathematical and Computer Applications (EJMCA) will also publish survey papers. Eurasian Mathematical Journal publishes 4 issues in a year. A working language of the journal is English. Main topics are: - Mathematical methods and modeling in mechanics, mining, biology, geophysics, electrodynamics, acoustics, industry. - Inverse problems of mathematical physics: theory and computational approaches. - Medical and industry tomography. - Computer applications: distributed information systems, decision-making systems, embedded systems, information security, graphics.