Zahra Niavarani, Daniel Breite, Muhammad Yasir, Vladimir Sedlarik, Andrea Prager, Nadja Schönherr, Bernd Abel, Roger Gläser, Agnes Schulze
{"title":"通过电子束辐照对微滤膜进行聚氨酯功能化处理,去除水中的内分泌干扰化学物质","authors":"Zahra Niavarani, Daniel Breite, Muhammad Yasir, Vladimir Sedlarik, Andrea Prager, Nadja Schönherr, Bernd Abel, Roger Gläser, Agnes Schulze","doi":"10.1007/s11783-024-1805-6","DOIUrl":null,"url":null,"abstract":"<p>Polyethersulphone (PES) membranes modified with urethane functional groups were prepared through an interfacial reaction using electron beam irradiation. The removal of eight endocrine disrupting chemicals (EDCs) was studied using both pristine and functionalized PES membranes. The prepared membranes underwent characterization using several techniques, including attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy, contact angle analysis, and measurements of pure water flux. Furthermore, dynamic adsorption experiments were conducted to evaluate the adsorption mechanism of the prepared membrane toward the eight EDCs. The urethane functionalized membranes were hydrophilic (52° contact angle) and maintained a high permeate flux (26000 L/h m<sup>2</sup> bar) throughout the filtration process. Dynamic adsorption results demonstrated that the introduction of urethane functional groups on the membranes significantly enhanced the removal efficiency of 17β-estradiol, estriol, bisphenol A, estrone, ethinylestradiol, and equilin. The adsorption loading of 17β-estradiol on the functionalized PES membrane was 6.7 ± 0.7 mg/m<sup>2</sup>, exhibiting a 5-fold increase compared to the unmodified PES membrane. The membranes were successfully regenerated and reused for three adsorption cycles without experiencing any loss of adsorption capacity.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of endocrine disrupting chemicals from water through urethane functionalization of microfiltration membranes via electron beam irradiation\",\"authors\":\"Zahra Niavarani, Daniel Breite, Muhammad Yasir, Vladimir Sedlarik, Andrea Prager, Nadja Schönherr, Bernd Abel, Roger Gläser, Agnes Schulze\",\"doi\":\"10.1007/s11783-024-1805-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polyethersulphone (PES) membranes modified with urethane functional groups were prepared through an interfacial reaction using electron beam irradiation. The removal of eight endocrine disrupting chemicals (EDCs) was studied using both pristine and functionalized PES membranes. The prepared membranes underwent characterization using several techniques, including attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy, contact angle analysis, and measurements of pure water flux. Furthermore, dynamic adsorption experiments were conducted to evaluate the adsorption mechanism of the prepared membrane toward the eight EDCs. The urethane functionalized membranes were hydrophilic (52° contact angle) and maintained a high permeate flux (26000 L/h m<sup>2</sup> bar) throughout the filtration process. Dynamic adsorption results demonstrated that the introduction of urethane functional groups on the membranes significantly enhanced the removal efficiency of 17β-estradiol, estriol, bisphenol A, estrone, ethinylestradiol, and equilin. The adsorption loading of 17β-estradiol on the functionalized PES membrane was 6.7 ± 0.7 mg/m<sup>2</sup>, exhibiting a 5-fold increase compared to the unmodified PES membrane. The membranes were successfully regenerated and reused for three adsorption cycles without experiencing any loss of adsorption capacity.\\n</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1805-6\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1805-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Removal of endocrine disrupting chemicals from water through urethane functionalization of microfiltration membranes via electron beam irradiation
Polyethersulphone (PES) membranes modified with urethane functional groups were prepared through an interfacial reaction using electron beam irradiation. The removal of eight endocrine disrupting chemicals (EDCs) was studied using both pristine and functionalized PES membranes. The prepared membranes underwent characterization using several techniques, including attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy, contact angle analysis, and measurements of pure water flux. Furthermore, dynamic adsorption experiments were conducted to evaluate the adsorption mechanism of the prepared membrane toward the eight EDCs. The urethane functionalized membranes were hydrophilic (52° contact angle) and maintained a high permeate flux (26000 L/h m2 bar) throughout the filtration process. Dynamic adsorption results demonstrated that the introduction of urethane functional groups on the membranes significantly enhanced the removal efficiency of 17β-estradiol, estriol, bisphenol A, estrone, ethinylestradiol, and equilin. The adsorption loading of 17β-estradiol on the functionalized PES membrane was 6.7 ± 0.7 mg/m2, exhibiting a 5-fold increase compared to the unmodified PES membrane. The membranes were successfully regenerated and reused for three adsorption cycles without experiencing any loss of adsorption capacity.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.