Jianxun Yang, Yunqi Liu, Berry van den Berg, Susie Wang, Lele Chen, Miaomiao Liu, Jun Bi
{"title":"清新空气吸引注意力,污染则分散注意力:大脑活动的证据","authors":"Jianxun Yang, Yunqi Liu, Berry van den Berg, Susie Wang, Lele Chen, Miaomiao Liu, Jun Bi","doi":"10.1007/s11783-024-1801-x","DOIUrl":null,"url":null,"abstract":"<p>Awareness of the adverse impact of air pollution on attention-related performance such as learning and driving is rapidly growing. However, there is still little known about the underlying neurocognitive mechanisms. Using an adapted dot-probe task paradigm and event-related potential (ERP) technique, we investigated how visual stimuli of air pollution influence the attentional allocation process. Participants were required to make responses to the onset of a target presented at the left or right visual field. The probable location of the target was forewarned by a cue (pollution or clean air images), appearing at either the target location (attention-holding trials) or the opposite location (attention-shifting trials). Behavioral measures showed that when cued by pollution images, subjects had higher response accuracy in attention-shifting trials. ERP analysis results revealed that after the cue onset, pollution images evoked lower N300 amplitudes, indicating less attention-capturing effects of dirty air. After the target onset, pollution cues were correlated with the higher P300 amplitudes in attention-holding trials but lower amplitudes in attention-shifting trials. It indicates that after visual exposure to air pollution, people need more neurocognitive resources to maintain attention but less effort to shift attention away. The findings provide the first neuroscientific evidence for the distracting effect of air pollution. We conclude with several practical implications and suggest the ERP technique as a promising tool to understand human responses to environmental stressors.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"14 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clean air captures attention whereas pollution distracts: evidence from brain activities\",\"authors\":\"Jianxun Yang, Yunqi Liu, Berry van den Berg, Susie Wang, Lele Chen, Miaomiao Liu, Jun Bi\",\"doi\":\"10.1007/s11783-024-1801-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Awareness of the adverse impact of air pollution on attention-related performance such as learning and driving is rapidly growing. However, there is still little known about the underlying neurocognitive mechanisms. Using an adapted dot-probe task paradigm and event-related potential (ERP) technique, we investigated how visual stimuli of air pollution influence the attentional allocation process. Participants were required to make responses to the onset of a target presented at the left or right visual field. The probable location of the target was forewarned by a cue (pollution or clean air images), appearing at either the target location (attention-holding trials) or the opposite location (attention-shifting trials). Behavioral measures showed that when cued by pollution images, subjects had higher response accuracy in attention-shifting trials. ERP analysis results revealed that after the cue onset, pollution images evoked lower N300 amplitudes, indicating less attention-capturing effects of dirty air. After the target onset, pollution cues were correlated with the higher P300 amplitudes in attention-holding trials but lower amplitudes in attention-shifting trials. It indicates that after visual exposure to air pollution, people need more neurocognitive resources to maintain attention but less effort to shift attention away. The findings provide the first neuroscientific evidence for the distracting effect of air pollution. We conclude with several practical implications and suggest the ERP technique as a promising tool to understand human responses to environmental stressors.\\n</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1801-x\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1801-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Clean air captures attention whereas pollution distracts: evidence from brain activities
Awareness of the adverse impact of air pollution on attention-related performance such as learning and driving is rapidly growing. However, there is still little known about the underlying neurocognitive mechanisms. Using an adapted dot-probe task paradigm and event-related potential (ERP) technique, we investigated how visual stimuli of air pollution influence the attentional allocation process. Participants were required to make responses to the onset of a target presented at the left or right visual field. The probable location of the target was forewarned by a cue (pollution or clean air images), appearing at either the target location (attention-holding trials) or the opposite location (attention-shifting trials). Behavioral measures showed that when cued by pollution images, subjects had higher response accuracy in attention-shifting trials. ERP analysis results revealed that after the cue onset, pollution images evoked lower N300 amplitudes, indicating less attention-capturing effects of dirty air. After the target onset, pollution cues were correlated with the higher P300 amplitudes in attention-holding trials but lower amplitudes in attention-shifting trials. It indicates that after visual exposure to air pollution, people need more neurocognitive resources to maintain attention but less effort to shift attention away. The findings provide the first neuroscientific evidence for the distracting effect of air pollution. We conclude with several practical implications and suggest the ERP technique as a promising tool to understand human responses to environmental stressors.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.