Shiliang Lin , Yanqiu Zhang , Lu Shao , Cher Hon Lau
{"title":"薄膜复合膜的喷涂辅助组装一次完成","authors":"Shiliang Lin , Yanqiu Zhang , Lu Shao , Cher Hon Lau","doi":"10.1016/j.advmem.2023.100080","DOIUrl":null,"url":null,"abstract":"<div><p>Spray coating has been exploited to fabricate and tailor the morphologies of various components in thin film composite membranes separately. For the first time, here we exploit this technology to construct and assemble both the selective layer and porous support of a thin-film composite membrane in a single process. In our approach, spray-assisted non-solvent induced phase inversion and interfacial polymerization reduced the time required to fabricate thin-film composite membranes from 3 – 4 days to 1 day and 40 min. Our approach did not sacrifice membrane separation performances during desalination of a mixture comprising 2000 ppm of NaCl in water at 4 bar and room temperature. At these conditions, compared to traditional thin film composite membranes, the water permeance of our spray coated membranes was higher by 35.7 %, reaching 2.32 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, while achieving a NaCl rejection rate of 94.7 %. This demonstrated the feasibility of fabricating thin film composites <em>via</em> spray coating in a single process, potentially reducing fabrication time during scale-up production.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100080"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823423000210/pdfft?md5=130328366904e35d2b38ade9104eef5d&pid=1-s2.0-S2772823423000210-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spray-assisted assembly of thin-film composite membranes in one process\",\"authors\":\"Shiliang Lin , Yanqiu Zhang , Lu Shao , Cher Hon Lau\",\"doi\":\"10.1016/j.advmem.2023.100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spray coating has been exploited to fabricate and tailor the morphologies of various components in thin film composite membranes separately. For the first time, here we exploit this technology to construct and assemble both the selective layer and porous support of a thin-film composite membrane in a single process. In our approach, spray-assisted non-solvent induced phase inversion and interfacial polymerization reduced the time required to fabricate thin-film composite membranes from 3 – 4 days to 1 day and 40 min. Our approach did not sacrifice membrane separation performances during desalination of a mixture comprising 2000 ppm of NaCl in water at 4 bar and room temperature. At these conditions, compared to traditional thin film composite membranes, the water permeance of our spray coated membranes was higher by 35.7 %, reaching 2.32 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, while achieving a NaCl rejection rate of 94.7 %. This demonstrated the feasibility of fabricating thin film composites <em>via</em> spray coating in a single process, potentially reducing fabrication time during scale-up production.</p></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"4 \",\"pages\":\"Article 100080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772823423000210/pdfft?md5=130328366904e35d2b38ade9104eef5d&pid=1-s2.0-S2772823423000210-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823423000210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823423000210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spray-assisted assembly of thin-film composite membranes in one process
Spray coating has been exploited to fabricate and tailor the morphologies of various components in thin film composite membranes separately. For the first time, here we exploit this technology to construct and assemble both the selective layer and porous support of a thin-film composite membrane in a single process. In our approach, spray-assisted non-solvent induced phase inversion and interfacial polymerization reduced the time required to fabricate thin-film composite membranes from 3 – 4 days to 1 day and 40 min. Our approach did not sacrifice membrane separation performances during desalination of a mixture comprising 2000 ppm of NaCl in water at 4 bar and room temperature. At these conditions, compared to traditional thin film composite membranes, the water permeance of our spray coated membranes was higher by 35.7 %, reaching 2.32 L m−2 h−1 bar−1, while achieving a NaCl rejection rate of 94.7 %. This demonstrated the feasibility of fabricating thin film composites via spray coating in a single process, potentially reducing fabrication time during scale-up production.