{"title":"西藏中长跑运动员从高海拔向低海拔过渡后蛋白质表达的变化:加强耐力训练的意义","authors":"","doi":"10.1016/j.smhs.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>The study aims to investigate the differences in protein expressions in Xizang's (Tibetan) middle-to-long distance runners after the transition from high altitude to low altitude and reveal the molecular mechanisms underlying their enhanced middle-to-long distance running performance. In the study, eleven subjects were selected from native Tibetan middle-to-long distance runners to participate in an 8-week pre-competition exercise training program consisting of a 6-week training stage in Kangding City at an altitude of 2 560 meters (m) and a subsequent 2-week training stage in Leshan City at an altitude of 360 m. Blood samples were collected twice from the runners before beginning altitude exercise training in Kangding and after going to sea level - Leshan City. Using a label-free quantitative method, peptides in the samples were analyzed by mass spectrometry. Proteomic analysis was performed to identify differentially expressed proteins and predict their biological functions. A total of 846 proteins were identified in the 21 samples, including 719 quantified proteins. In total, 49 significantly differentially expressed proteins (<em>p</em> < 0.05) were identified, including twenty-eight 0.2-fold up-regulated proteins or twenty-one 0.17-fold down-regulated proteins. The up-regulated proteins, including cystic fibrosis transmembrane conductance regulator (CFTR) and carbonic anhydrase I (CAI), were of particular interest due to their role in regulating the oxygen saturation in deep tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these proteins were mainly involved in regulating actin cytoskeleton, local adhesion, biotin absorption and metabolism, immune system, cancer, and membrane transport processes. In conclusion, Tibetan middle-to-long distance runners who resided in high-altitude areas benefited from repeated plateau-plain alternate training mode during the pre-competition period. The training mode induced positive changes in peripheral blood plasma proteins (CFTR and CAI), the biomarkers associated with aerobic capacity. Among the 11 runners, one female athlete won the gold medal in the 3 000-m running event in this competition, demonstrating that the plateau-plain alternate training mode could enhance the aerobic capacity of athletes.</p></div>","PeriodicalId":33620,"journal":{"name":"Sports Medicine and Health Science","volume":"6 4","pages":"Pages 370-377"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666337623000975/pdfft?md5=58470a941ad9fe65979bce2289dddc56&pid=1-s2.0-S2666337623000975-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Protein expression changes in Tibetan middle-to-long distance runners after the transition from high altitude to low altitude: Implications for enhancing endurance training\",\"authors\":\"\",\"doi\":\"10.1016/j.smhs.2023.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study aims to investigate the differences in protein expressions in Xizang's (Tibetan) middle-to-long distance runners after the transition from high altitude to low altitude and reveal the molecular mechanisms underlying their enhanced middle-to-long distance running performance. In the study, eleven subjects were selected from native Tibetan middle-to-long distance runners to participate in an 8-week pre-competition exercise training program consisting of a 6-week training stage in Kangding City at an altitude of 2 560 meters (m) and a subsequent 2-week training stage in Leshan City at an altitude of 360 m. Blood samples were collected twice from the runners before beginning altitude exercise training in Kangding and after going to sea level - Leshan City. Using a label-free quantitative method, peptides in the samples were analyzed by mass spectrometry. Proteomic analysis was performed to identify differentially expressed proteins and predict their biological functions. A total of 846 proteins were identified in the 21 samples, including 719 quantified proteins. In total, 49 significantly differentially expressed proteins (<em>p</em> < 0.05) were identified, including twenty-eight 0.2-fold up-regulated proteins or twenty-one 0.17-fold down-regulated proteins. The up-regulated proteins, including cystic fibrosis transmembrane conductance regulator (CFTR) and carbonic anhydrase I (CAI), were of particular interest due to their role in regulating the oxygen saturation in deep tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these proteins were mainly involved in regulating actin cytoskeleton, local adhesion, biotin absorption and metabolism, immune system, cancer, and membrane transport processes. In conclusion, Tibetan middle-to-long distance runners who resided in high-altitude areas benefited from repeated plateau-plain alternate training mode during the pre-competition period. The training mode induced positive changes in peripheral blood plasma proteins (CFTR and CAI), the biomarkers associated with aerobic capacity. Among the 11 runners, one female athlete won the gold medal in the 3 000-m running event in this competition, demonstrating that the plateau-plain alternate training mode could enhance the aerobic capacity of athletes.</p></div>\",\"PeriodicalId\":33620,\"journal\":{\"name\":\"Sports Medicine and Health Science\",\"volume\":\"6 4\",\"pages\":\"Pages 370-377\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666337623000975/pdfft?md5=58470a941ad9fe65979bce2289dddc56&pid=1-s2.0-S2666337623000975-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Medicine and Health Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666337623000975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine and Health Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666337623000975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Protein expression changes in Tibetan middle-to-long distance runners after the transition from high altitude to low altitude: Implications for enhancing endurance training
The study aims to investigate the differences in protein expressions in Xizang's (Tibetan) middle-to-long distance runners after the transition from high altitude to low altitude and reveal the molecular mechanisms underlying their enhanced middle-to-long distance running performance. In the study, eleven subjects were selected from native Tibetan middle-to-long distance runners to participate in an 8-week pre-competition exercise training program consisting of a 6-week training stage in Kangding City at an altitude of 2 560 meters (m) and a subsequent 2-week training stage in Leshan City at an altitude of 360 m. Blood samples were collected twice from the runners before beginning altitude exercise training in Kangding and after going to sea level - Leshan City. Using a label-free quantitative method, peptides in the samples were analyzed by mass spectrometry. Proteomic analysis was performed to identify differentially expressed proteins and predict their biological functions. A total of 846 proteins were identified in the 21 samples, including 719 quantified proteins. In total, 49 significantly differentially expressed proteins (p < 0.05) were identified, including twenty-eight 0.2-fold up-regulated proteins or twenty-one 0.17-fold down-regulated proteins. The up-regulated proteins, including cystic fibrosis transmembrane conductance regulator (CFTR) and carbonic anhydrase I (CAI), were of particular interest due to their role in regulating the oxygen saturation in deep tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these proteins were mainly involved in regulating actin cytoskeleton, local adhesion, biotin absorption and metabolism, immune system, cancer, and membrane transport processes. In conclusion, Tibetan middle-to-long distance runners who resided in high-altitude areas benefited from repeated plateau-plain alternate training mode during the pre-competition period. The training mode induced positive changes in peripheral blood plasma proteins (CFTR and CAI), the biomarkers associated with aerobic capacity. Among the 11 runners, one female athlete won the gold medal in the 3 000-m running event in this competition, demonstrating that the plateau-plain alternate training mode could enhance the aerobic capacity of athletes.