利用电子健康记录数据解决 COVID 之后新发 2 型糖尿病研究中常见的偏差来源问题

IF 1 Q4 ENDOCRINOLOGY & METABOLISM
Jessica L Harding , Emily Pfaff , Edward Boyko , Pandora L. Wander
{"title":"利用电子健康记录数据解决 COVID 之后新发 2 型糖尿病研究中常见的偏差来源问题","authors":"Jessica L Harding ,&nbsp;Emily Pfaff ,&nbsp;Edward Boyko ,&nbsp;Pandora L. Wander","doi":"10.1016/j.deman.2023.100193","DOIUrl":null,"url":null,"abstract":"<div><p>Observational studies based on cohorts built from electronic health records (EHR) form the backbone of our current understanding of the risk of new-onset diabetes following COVID. EHR-based research is a powerful tool for medical research but is subject to multiple sources of bias. In this viewpoint, we define key sources of bias that threaten the validity of EHR-based research on this topic (namely misclassification, selection, surveillance, immortal time, and confounding biases), describe their implications, and suggest best practices to avoid them in the context of COVID-diabetes research.</p></div>","PeriodicalId":72796,"journal":{"name":"Diabetes epidemiology and management","volume":"14 ","pages":"Article 100193"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666970623000720/pdfft?md5=3aa04e16907441ea14ae3ca507e9c8b2&pid=1-s2.0-S2666970623000720-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Addressing common sources of bias in studies of new-onset type 2 diabetes following COVID that use electronic health record data\",\"authors\":\"Jessica L Harding ,&nbsp;Emily Pfaff ,&nbsp;Edward Boyko ,&nbsp;Pandora L. Wander\",\"doi\":\"10.1016/j.deman.2023.100193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Observational studies based on cohorts built from electronic health records (EHR) form the backbone of our current understanding of the risk of new-onset diabetes following COVID. EHR-based research is a powerful tool for medical research but is subject to multiple sources of bias. In this viewpoint, we define key sources of bias that threaten the validity of EHR-based research on this topic (namely misclassification, selection, surveillance, immortal time, and confounding biases), describe their implications, and suggest best practices to avoid them in the context of COVID-diabetes research.</p></div>\",\"PeriodicalId\":72796,\"journal\":{\"name\":\"Diabetes epidemiology and management\",\"volume\":\"14 \",\"pages\":\"Article 100193\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666970623000720/pdfft?md5=3aa04e16907441ea14ae3ca507e9c8b2&pid=1-s2.0-S2666970623000720-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes epidemiology and management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666970623000720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes epidemiology and management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666970623000720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

基于电子健康记录(EHR)建立的队列进行的观察性研究是我们目前了解 COVID 后新发糖尿病风险的基础。基于电子病历的研究是医学研究的有力工具,但也受到多种偏倚来源的影响。在这一观点中,我们定义了威胁基于电子病历的相关研究有效性的主要偏倚来源(即误分类、选择、监测、不朽时间和混杂偏倚),描述了它们的影响,并提出了在 COVID-糖尿病研究中避免这些偏倚的最佳实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing common sources of bias in studies of new-onset type 2 diabetes following COVID that use electronic health record data

Observational studies based on cohorts built from electronic health records (EHR) form the backbone of our current understanding of the risk of new-onset diabetes following COVID. EHR-based research is a powerful tool for medical research but is subject to multiple sources of bias. In this viewpoint, we define key sources of bias that threaten the validity of EHR-based research on this topic (namely misclassification, selection, surveillance, immortal time, and confounding biases), describe their implications, and suggest best practices to avoid them in the context of COVID-diabetes research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes epidemiology and management
Diabetes epidemiology and management Endocrinology, Diabetes and Metabolism, Public Health and Health Policy
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
14 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信