可重构智能表面辅助非信任中继网络的联合优化方案

IF 3.1 3区 计算机科学 Q2 TELECOMMUNICATIONS
L. Gong, Wei Xu, Xiaoxiu Ding, Nanrun Zhou, Qibiao Zhu
{"title":"可重构智能表面辅助非信任中继网络的联合优化方案","authors":"L. Gong, Wei Xu, Xiaoxiu Ding, Nanrun Zhou, Qibiao Zhu","doi":"10.23919/JCC.ea.2021-0806.202302","DOIUrl":null,"url":null,"abstract":"To further improve the secrecy rate, a joint optimization scheme for the reconfigurable intelligent surface (RIS) phase shift and the power allocation is proposed in the untrusted relay (UR) networks assisted by the RIS. The eavesdropping on the UR is interfered by a source-based jamming strategy. Under the constraints of unit modulus and total power, the RIS phase shift, the power allocation between the confidential signal and the jamming signal, and the power allocation between the source node and the UR are jointly optimized to maximize the secrecy rate. The complex multivariable coupling problem is decomposed into three sub-problems, and the non-convexity of the objective function and the constraints is solved with semi-definite relaxation. Simulation results indicate that the secrecy rate is remarkably enhanced with the proposed scheme compared with the equal power allocation scheme, the random phase shift scheme, and the no-RIS scheme.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint optimization scheme for the reconfigurable intelligent surface-assisted untrusted relay networks\",\"authors\":\"L. Gong, Wei Xu, Xiaoxiu Ding, Nanrun Zhou, Qibiao Zhu\",\"doi\":\"10.23919/JCC.ea.2021-0806.202302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To further improve the secrecy rate, a joint optimization scheme for the reconfigurable intelligent surface (RIS) phase shift and the power allocation is proposed in the untrusted relay (UR) networks assisted by the RIS. The eavesdropping on the UR is interfered by a source-based jamming strategy. Under the constraints of unit modulus and total power, the RIS phase shift, the power allocation between the confidential signal and the jamming signal, and the power allocation between the source node and the UR are jointly optimized to maximize the secrecy rate. The complex multivariable coupling problem is decomposed into three sub-problems, and the non-convexity of the objective function and the constraints is solved with semi-definite relaxation. Simulation results indicate that the secrecy rate is remarkably enhanced with the proposed scheme compared with the equal power allocation scheme, the random phase shift scheme, and the no-RIS scheme.\",\"PeriodicalId\":9814,\"journal\":{\"name\":\"China Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/JCC.ea.2021-0806.202302\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/JCC.ea.2021-0806.202302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了进一步提高保密率,在由可重构智能表面(RIS)辅助的不可信任中继(UR)网络中,提出了可重构智能表面(RIS)相移和功率分配的联合优化方案。对 UR 的窃听受到基于源的干扰策略的干扰。在单位模数和总功率的约束下,对 RIS 相移、保密信号与干扰信号之间的功率分配以及源节点与 UR 之间的功率分配进行了联合优化,以最大限度地提高保密率。复杂的多变量耦合问题被分解为三个子问题,目标函数和约束条件的非凸性通过半有限松弛求解。仿真结果表明,与等功率分配方案、随机相移方案和无 RIS 方案相比,拟议方案的保密率显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint optimization scheme for the reconfigurable intelligent surface-assisted untrusted relay networks
To further improve the secrecy rate, a joint optimization scheme for the reconfigurable intelligent surface (RIS) phase shift and the power allocation is proposed in the untrusted relay (UR) networks assisted by the RIS. The eavesdropping on the UR is interfered by a source-based jamming strategy. Under the constraints of unit modulus and total power, the RIS phase shift, the power allocation between the confidential signal and the jamming signal, and the power allocation between the source node and the UR are jointly optimized to maximize the secrecy rate. The complex multivariable coupling problem is decomposed into three sub-problems, and the non-convexity of the objective function and the constraints is solved with semi-definite relaxation. Simulation results indicate that the secrecy rate is remarkably enhanced with the proposed scheme compared with the equal power allocation scheme, the random phase shift scheme, and the no-RIS scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
China Communications
China Communications 工程技术-电信学
CiteScore
8.00
自引率
12.20%
发文量
2868
审稿时长
8.6 months
期刊介绍: China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide. The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology. China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信