RealFuVSR:功能增强型真实世界视频超分辨率

Q1 Computer Science
Zhi Li , Xiong Pang , Yiyue Jiang , Yujie Wang
{"title":"RealFuVSR:功能增强型真实世界视频超分辨率","authors":"Zhi Li ,&nbsp;Xiong Pang ,&nbsp;Yiyue Jiang ,&nbsp;Yujie Wang","doi":"10.1016/j.vrih.2023.06.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The recurrent recovery is one of the common methods for video super-resolution, which models the correlation between frames via hidden states. However, when we apply the structure to real-world scenarios, it leads to unsatisfactory artifacts. We found that, in the real-world video super-resolution training, the use of unknown and complex degradation can better simulate the degradation process of the real world.</p></div><div><h3>Methods</h3><p>Based on this, we propose the RealFuVSR model, which simulates the real-world degradation and mitigates the artifacts caused by the video super-resolution. Specifically, we propose a multi-scale feature extraction module(MSF) which extracts and fuses features from multiple scales, it facilitates the elimination of hidden state artifacts. In order to improve the accuracy of hidden states alignment information, RealFuVSR use advanced optical flow-guided deformable convolution. Besides, cascaded residual upsampling module is used to eliminate the noise caused by the upsampling process.</p></div><div><h3>Results</h3><p>The experiment demonstrates that our RealFuVSR model can not only recover the high-quality video but also outperform the state-of-the-art RealBasicVSR and RealESRGAN models.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"5 6","pages":"Pages 523-537"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096579623000396/pdf?md5=ccc376bebb752e8cce7b3633ad69bf64&pid=1-s2.0-S2096579623000396-main.pdf","citationCount":"0","resultStr":"{\"title\":\"RealFuVSR: Feature Enhanced Real-World Video Super-Resolution\",\"authors\":\"Zhi Li ,&nbsp;Xiong Pang ,&nbsp;Yiyue Jiang ,&nbsp;Yujie Wang\",\"doi\":\"10.1016/j.vrih.2023.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The recurrent recovery is one of the common methods for video super-resolution, which models the correlation between frames via hidden states. However, when we apply the structure to real-world scenarios, it leads to unsatisfactory artifacts. We found that, in the real-world video super-resolution training, the use of unknown and complex degradation can better simulate the degradation process of the real world.</p></div><div><h3>Methods</h3><p>Based on this, we propose the RealFuVSR model, which simulates the real-world degradation and mitigates the artifacts caused by the video super-resolution. Specifically, we propose a multi-scale feature extraction module(MSF) which extracts and fuses features from multiple scales, it facilitates the elimination of hidden state artifacts. In order to improve the accuracy of hidden states alignment information, RealFuVSR use advanced optical flow-guided deformable convolution. Besides, cascaded residual upsampling module is used to eliminate the noise caused by the upsampling process.</p></div><div><h3>Results</h3><p>The experiment demonstrates that our RealFuVSR model can not only recover the high-quality video but also outperform the state-of-the-art RealBasicVSR and RealESRGAN models.</p></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":\"5 6\",\"pages\":\"Pages 523-537\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096579623000396/pdf?md5=ccc376bebb752e8cce7b3633ad69bf64&pid=1-s2.0-S2096579623000396-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096579623000396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579623000396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

背景递归复原是视频超分辨率的常用方法之一,它通过隐藏状态来模拟帧与帧之间的相关性。然而,当我们把这种结构应用到真实世界的场景中时,却会产生令人不满意的伪影。在此基础上,我们提出了 RealFuVSR 模型,该模型可以模拟真实世界中的降解过程,减轻视频超分辨率带来的伪影。具体来说,我们提出了多尺度特征提取模块(MSF),该模块从多个尺度提取并融合特征,有助于消除隐藏状态伪影。为了提高隐藏状态配准信息的准确性,RealFuVSR 采用了先进的光流引导变形卷积技术。实验结果表明,我们的 RealFuVSR 模型不仅能恢复高质量的视频,而且性能优于最先进的 RealBasicVSR 和 RealESRGAN 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RealFuVSR: Feature Enhanced Real-World Video Super-Resolution

Background

The recurrent recovery is one of the common methods for video super-resolution, which models the correlation between frames via hidden states. However, when we apply the structure to real-world scenarios, it leads to unsatisfactory artifacts. We found that, in the real-world video super-resolution training, the use of unknown and complex degradation can better simulate the degradation process of the real world.

Methods

Based on this, we propose the RealFuVSR model, which simulates the real-world degradation and mitigates the artifacts caused by the video super-resolution. Specifically, we propose a multi-scale feature extraction module(MSF) which extracts and fuses features from multiple scales, it facilitates the elimination of hidden state artifacts. In order to improve the accuracy of hidden states alignment information, RealFuVSR use advanced optical flow-guided deformable convolution. Besides, cascaded residual upsampling module is used to eliminate the noise caused by the upsampling process.

Results

The experiment demonstrates that our RealFuVSR model can not only recover the high-quality video but also outperform the state-of-the-art RealBasicVSR and RealESRGAN models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信