基于圆钢钉的马尾松和杉木规格材持钉性能比较

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD
De Li, Liping Yu, Lifen Li, Jiankun Liang, Zhigang Wu, Guifen Yang, Shuang Yin, Feiyan Gong
{"title":"基于圆钢钉的马尾松和杉木规格材持钉性能比较","authors":"De Li, Liping Yu, Lifen Li, Jiankun Liang, Zhigang Wu, Guifen Yang, Shuang Yin, Feiyan Gong","doi":"10.15376/biores.19.1.670-682","DOIUrl":null,"url":null,"abstract":"In this study, the influence of the diameter of round steel nails, the guiding bores, and the wood sections on the nail holding performance of Pinus massoniana and Cunninghamia lanceolata dimension lumber was explored. The results showed that the nail-holding power of round steel nails mainly came from their friction with wood fibers, while the radial and tangential sections were also affected by the shearing action of wood fibers. The tangential section reached the largest nail-holding power, followed by the radial section and cross section. Greater wood density was associated with higher nail holding power. Under a large nail diameter, however, high-density wood was prone to plastic cracking, which influenced the nail holding power greatly. Prefabricated guiding bores could prevent plastic cracking in wood to some extent and improve the nail holding power of Pinus massoniana and Cunninghamia lanceolata dimension lumber when diameter of round steel nails was more than 3.0 mm. For Cunninghamia lanceolata characterized by low density and rigidity, the wood fiber was in close contact with the round steel nail and internal cracking could not be easily generated under a large diameter of round steel nails.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"234 ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of nail-holding performance of Pinus massoniana and Cunninghamia lanceolata dimension lumber based on round steel nails\",\"authors\":\"De Li, Liping Yu, Lifen Li, Jiankun Liang, Zhigang Wu, Guifen Yang, Shuang Yin, Feiyan Gong\",\"doi\":\"10.15376/biores.19.1.670-682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the influence of the diameter of round steel nails, the guiding bores, and the wood sections on the nail holding performance of Pinus massoniana and Cunninghamia lanceolata dimension lumber was explored. The results showed that the nail-holding power of round steel nails mainly came from their friction with wood fibers, while the radial and tangential sections were also affected by the shearing action of wood fibers. The tangential section reached the largest nail-holding power, followed by the radial section and cross section. Greater wood density was associated with higher nail holding power. Under a large nail diameter, however, high-density wood was prone to plastic cracking, which influenced the nail holding power greatly. Prefabricated guiding bores could prevent plastic cracking in wood to some extent and improve the nail holding power of Pinus massoniana and Cunninghamia lanceolata dimension lumber when diameter of round steel nails was more than 3.0 mm. For Cunninghamia lanceolata characterized by low density and rigidity, the wood fiber was in close contact with the round steel nail and internal cracking could not be easily generated under a large diameter of round steel nails.\",\"PeriodicalId\":9172,\"journal\":{\"name\":\"Bioresources\",\"volume\":\"234 \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15376/biores.19.1.670-682\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.1.670-682","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了圆钢钉的直径、导向孔和木材截面对 Pinus massoniana 和 Cunninghamia lanceolata 尺寸材持钉性能的影响。结果表明,圆钢钉的持钉力主要来自与木材纤维的摩擦,而径向和切向截面也受到木材纤维剪切作用的影响。切向截面的持钉力最大,其次是径向截面和横截面。木材密度越大,握钉力越高。然而,在钉子直径较大的情况下,高密度木材容易出现塑性开裂,这对持钉力影响很大。当圆钢钉直径大于 3.0 毫米时,预制导孔可在一定程度上防止木材塑性开裂,并提高松木和杉木的握钉力。对于密度和刚度较低的杉木来说,木材纤维与圆钢钉紧密接触,在圆钢钉直径较大的情况下不易产生内部开裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of nail-holding performance of Pinus massoniana and Cunninghamia lanceolata dimension lumber based on round steel nails
In this study, the influence of the diameter of round steel nails, the guiding bores, and the wood sections on the nail holding performance of Pinus massoniana and Cunninghamia lanceolata dimension lumber was explored. The results showed that the nail-holding power of round steel nails mainly came from their friction with wood fibers, while the radial and tangential sections were also affected by the shearing action of wood fibers. The tangential section reached the largest nail-holding power, followed by the radial section and cross section. Greater wood density was associated with higher nail holding power. Under a large nail diameter, however, high-density wood was prone to plastic cracking, which influenced the nail holding power greatly. Prefabricated guiding bores could prevent plastic cracking in wood to some extent and improve the nail holding power of Pinus massoniana and Cunninghamia lanceolata dimension lumber when diameter of round steel nails was more than 3.0 mm. For Cunninghamia lanceolata characterized by low density and rigidity, the wood fiber was in close contact with the round steel nail and internal cracking could not be easily generated under a large diameter of round steel nails.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresources
Bioresources 工程技术-材料科学:纸与木材
CiteScore
2.90
自引率
13.30%
发文量
397
审稿时长
2.3 months
期刊介绍: The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信