换元密码分析实用化

IF 1.7 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jules Baudrin, P. Felke, Gregor Leander, P. Neumann, Léo Perrin, Lukas Stennes
{"title":"换元密码分析实用化","authors":"Jules Baudrin, P. Felke, Gregor Leander, P. Neumann, Léo Perrin, Lukas Stennes","doi":"10.46586/tosc.v2023.i4.299-329","DOIUrl":null,"url":null,"abstract":"About 20 years ago, Wagner showed that most of the (then) known techniques used in the cryptanalysis of block ciphers were particular cases of what he called commutative diagram cryptanalysis. However, to the best of our knowledge, this general framework has not yet been leveraged to find concrete attacks.In this paper, we focus on a particular case of this framework and develop commutative cryptanalysis, whereby an attacker targeting a primitive E constructs affine permutations A and B such that E ○ A = B ○ E with a high probability, possibly for some weak keys. We develop the tools needed for the practical use of this technique: first, we generalize differential uniformity into “A-uniformity” and differential trails into “commutative trails”, and second we investigate the commutative behaviour of S-box layers, matrix multiplications, and key additions.Equipped with these new techniques, we find probability-one distinguishers using only two chosen plaintexts for large classes of weak keys in both a modified Midori and in Scream. For the same weak keys, we deduce high probability truncated differentials that can cover an arbitrary number of rounds, but which do not correspond to any high probability differential trails. Similarly, we show the existence of a trade-off in our variant of Midori whereby the probability of the commutative trail can be decreased in order to increase the weak key density. We also show some statistical patterns in the AES super S-box that have a much higher probability than the best differentials, and which hold for a class of weak keys of density about 2−4.5.","PeriodicalId":37077,"journal":{"name":"IACR Transactions on Symmetric Cryptology","volume":"257 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutative Cryptanalysis Made Practical\",\"authors\":\"Jules Baudrin, P. Felke, Gregor Leander, P. Neumann, Léo Perrin, Lukas Stennes\",\"doi\":\"10.46586/tosc.v2023.i4.299-329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"About 20 years ago, Wagner showed that most of the (then) known techniques used in the cryptanalysis of block ciphers were particular cases of what he called commutative diagram cryptanalysis. However, to the best of our knowledge, this general framework has not yet been leveraged to find concrete attacks.In this paper, we focus on a particular case of this framework and develop commutative cryptanalysis, whereby an attacker targeting a primitive E constructs affine permutations A and B such that E ○ A = B ○ E with a high probability, possibly for some weak keys. We develop the tools needed for the practical use of this technique: first, we generalize differential uniformity into “A-uniformity” and differential trails into “commutative trails”, and second we investigate the commutative behaviour of S-box layers, matrix multiplications, and key additions.Equipped with these new techniques, we find probability-one distinguishers using only two chosen plaintexts for large classes of weak keys in both a modified Midori and in Scream. For the same weak keys, we deduce high probability truncated differentials that can cover an arbitrary number of rounds, but which do not correspond to any high probability differential trails. Similarly, we show the existence of a trade-off in our variant of Midori whereby the probability of the commutative trail can be decreased in order to increase the weak key density. We also show some statistical patterns in the AES super S-box that have a much higher probability than the best differentials, and which hold for a class of weak keys of density about 2−4.5.\",\"PeriodicalId\":37077,\"journal\":{\"name\":\"IACR Transactions on Symmetric Cryptology\",\"volume\":\"257 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Transactions on Symmetric Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46586/tosc.v2023.i4.299-329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Transactions on Symmetric Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46586/tosc.v2023.i4.299-329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

大约 20 年前,瓦格纳(Wagner)指出,(当时)已知的用于区块密码分析的大多数技术都是他所称的交换图密码分析的特殊案例。在本文中,我们将重点放在该框架的一个特殊案例上,并开发了换元图密码分析技术。攻击者可以通过换元图密码分析技术,针对基元 E 构造仿射排列 A 和 B,从而高概率地实现 E ○ A = B ○ E,而且可能是针对某些弱密钥。我们开发了实际使用这种技术所需的工具:首先,我们将差分均匀性概括为 "A-均匀性",将差分轨迹概括为 "换向轨迹";其次,我们研究了 S 盒层、矩阵乘法和密钥添加的换向行为。对于相同的弱密钥,我们推导出了高概率截断差分,它可以覆盖任意数量的回合,但并不对应任何高概率差分轨迹。同样,我们还展示了 Midori 变体中存在的一种折衷方法,即通过降低换算轨迹的概率来提高弱密钥密度。我们还展示了 AES 超级 S 盒中的一些统计模式,它们的概率比最佳差分高得多,而且在密度约为 2-4.5 的一类弱密钥中也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commutative Cryptanalysis Made Practical
About 20 years ago, Wagner showed that most of the (then) known techniques used in the cryptanalysis of block ciphers were particular cases of what he called commutative diagram cryptanalysis. However, to the best of our knowledge, this general framework has not yet been leveraged to find concrete attacks.In this paper, we focus on a particular case of this framework and develop commutative cryptanalysis, whereby an attacker targeting a primitive E constructs affine permutations A and B such that E ○ A = B ○ E with a high probability, possibly for some weak keys. We develop the tools needed for the practical use of this technique: first, we generalize differential uniformity into “A-uniformity” and differential trails into “commutative trails”, and second we investigate the commutative behaviour of S-box layers, matrix multiplications, and key additions.Equipped with these new techniques, we find probability-one distinguishers using only two chosen plaintexts for large classes of weak keys in both a modified Midori and in Scream. For the same weak keys, we deduce high probability truncated differentials that can cover an arbitrary number of rounds, but which do not correspond to any high probability differential trails. Similarly, we show the existence of a trade-off in our variant of Midori whereby the probability of the commutative trail can be decreased in order to increase the weak key density. We also show some statistical patterns in the AES super S-box that have a much higher probability than the best differentials, and which hold for a class of weak keys of density about 2−4.5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IACR Transactions on Symmetric Cryptology
IACR Transactions on Symmetric Cryptology Mathematics-Applied Mathematics
CiteScore
5.50
自引率
22.90%
发文量
37
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信