利用纤维增强聚合物设计卫星所需的材料表征

IF 3 Q2 MATERIALS SCIENCE, COMPOSITES
Esha, Joachim Hausmann
{"title":"利用纤维增强聚合物设计卫星所需的材料表征","authors":"Esha, Joachim Hausmann","doi":"10.3390/jcs7120515","DOIUrl":null,"url":null,"abstract":"This review paper discusses the effect of polymers, especially thermoplastics, in environments with low earth orbits. Space weather in terms of low earth orbits has been characterized into seven main elements, namely microgravity, residual atmosphere, high vacuum, atomic oxygen, ultraviolet and ionization radiation, solar radiation, and space debris. Each element is discussed extensively. Its effect on polymers and composite materials has also been studied. Quantification of these effects can be evaluated by understanding the mechanisms of material degradation caused by each environmental factor along with its synergetic effect. Hence, the design elements to mitigate the material degradation can be identified. Finally, a cause-and-effect diagram (Ishikawa diagram) is designed to characterize the important design elements required to investigate while choosing a material for a satellite’s structure. This will help the designers to develop experimental methodologies to test the composite material for its suitability against the space environment. Some available testing facilities will be discussed. Some potential polymers will also be suggested for further evaluation.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"15 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material Characterization Required for Designing Satellites from Fiber-Reinforced Polymers\",\"authors\":\"Esha, Joachim Hausmann\",\"doi\":\"10.3390/jcs7120515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper discusses the effect of polymers, especially thermoplastics, in environments with low earth orbits. Space weather in terms of low earth orbits has been characterized into seven main elements, namely microgravity, residual atmosphere, high vacuum, atomic oxygen, ultraviolet and ionization radiation, solar radiation, and space debris. Each element is discussed extensively. Its effect on polymers and composite materials has also been studied. Quantification of these effects can be evaluated by understanding the mechanisms of material degradation caused by each environmental factor along with its synergetic effect. Hence, the design elements to mitigate the material degradation can be identified. Finally, a cause-and-effect diagram (Ishikawa diagram) is designed to characterize the important design elements required to investigate while choosing a material for a satellite’s structure. This will help the designers to develop experimental methodologies to test the composite material for its suitability against the space environment. Some available testing facilities will be discussed. Some potential polymers will also be suggested for further evaluation.\",\"PeriodicalId\":15435,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs7120515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs7120515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本综述论文讨论了聚合物,特别是热塑性塑料在低地球轨道环境中的影响。低地球轨道的空间天气主要分为七个要素,即微重力、残余大气、高真空、原子氧、紫外线和电离辐射、太阳辐射和空间碎片。对每个要素都进行了广泛的讨论。还研究了其对聚合物和复合材料的影响。通过了解每个环境因素造成的材料降解机制及其协同效应,可以对这些影响进行量化评估。因此,可以确定减缓材料降解的设计要素。最后,设计了一个因果图(石川图),以描述在为卫星结构选择材料时需要研究的重要设计要素。这将有助于设计人员制定实验方法,测试复合材料是否适合太空环境。将讨论一些可用的测试设施。还将建议对一些潜在的聚合物进行进一步评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material Characterization Required for Designing Satellites from Fiber-Reinforced Polymers
This review paper discusses the effect of polymers, especially thermoplastics, in environments with low earth orbits. Space weather in terms of low earth orbits has been characterized into seven main elements, namely microgravity, residual atmosphere, high vacuum, atomic oxygen, ultraviolet and ionization radiation, solar radiation, and space debris. Each element is discussed extensively. Its effect on polymers and composite materials has also been studied. Quantification of these effects can be evaluated by understanding the mechanisms of material degradation caused by each environmental factor along with its synergetic effect. Hence, the design elements to mitigate the material degradation can be identified. Finally, a cause-and-effect diagram (Ishikawa diagram) is designed to characterize the important design elements required to investigate while choosing a material for a satellite’s structure. This will help the designers to develop experimental methodologies to test the composite material for its suitability against the space environment. Some available testing facilities will be discussed. Some potential polymers will also be suggested for further evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composites Science
Journal of Composites Science MATERIALS SCIENCE, COMPOSITES-
CiteScore
5.00
自引率
9.10%
发文量
328
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信